Commit 685e0ed3 by zhangbo

make table show correctly shown on html

1 parent 23a66b7f
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
You can adapt this file completely to your liking, but it should at least You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive. contain the root `toctree` directive.
Welcome to SeetaDoc's documentation! Welcome to Seeta's documentation!
==================================== ====================================
.. toctree:: .. toctree::
...@@ -11,3 +11,9 @@ Welcome to SeetaDoc's documentation! ...@@ -11,3 +11,9 @@ Welcome to SeetaDoc's documentation!
:caption: Contents: :caption: Contents:
人脸检测 人脸检测
特征点检测
人脸识别
人脸跟踪
质量评估器
近红外活体
# 人脸检测器 # 人脸检测器
...@@ -8,69 +8,189 @@ ...@@ -8,69 +8,189 @@
### **2.1 struct SeetaImageData**<br> ### **2.1 struct SeetaImageData**<br>
|名称 | 类型 | 说明| <table border="1">
|---|---|---| <tr>
|data|unit8_t* |图像数据| <th>名称</th>
|width | int32_t | 图像的宽度| <th>类型</th>
|height | int32_t | 图像的高度| <th>说明</th>
|channels | int32_t | 图像的通道数| </tr>
<tr>
说明:存储彩色(三通道)或灰度(单通道)图像,像素连续存储,行优先,采用 BGR888 格式存放彩色图像,单字节灰度值存放灰度图像。 <th>data</th>
<th>uint8_t*</th>
<th>图像数据</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>图像的宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>图像的高度</th>
</tr>
<tr>
<th>channels</th>
<th>int32_t</th>
<th>图像的通道数</th>
</tr>
</table>
<br>
说明:存储彩色(三通道)或灰度(单通道)图像,像素连续存储,行优先,采用 BGR888 格式存放彩色图像,单字节灰度值存放灰度图像。<br>
### **2.2 struct SeetaRect**<br> ### **2.2 struct SeetaRect**<br>
|名称 | 类型 | 说明| <table border="1">
|---|---|---| <tr>
|x|int32_t |人脸区域左上角横坐标| <th>名称</th>
|y| int32_t | 人脸区域左上角纵坐标| <th>类型</th>
|width| int32_t | 人脸区域宽度| <th>说明</th>
|height| int32_t | 人脸区域高度| </tr>
<tr>
<th>x</th>
<th>int32_t</th>
<th>人脸区域左上角横坐标</th>
</tr>
<tr>
<th>y</th>
<th>int32_t</th>
<th>人脸区域左上角纵坐标</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>人脸区域宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>人脸区域高度</th>
</tr>
</table>
<br>
### **2.3 struct SeetaFaceInfo**<br> ### **2.3 struct SeetaFaceInfo**<br>
|名称 | 类型 | 说明| <table border="1">
|---|---|---| <tr>
|pos|SeetaRect|人脸位置| <th>名称</th>
|score|float|人脸置信分数| <th>类型</th>
<th>说明</th>
### **2.4 struct SeetaFaceInfoArray**<br> </tr>
<tr>
|名称 | 类型 | 说明| <th>pos</th>
|---|---|---| <th>SeetaRect</th>
|data|const SeetaFaceInfo*|人脸信息数组| <th>人脸位置</th>
|size|int|人脸信息数组长度| </tr>
<tr>
<th>score</th>
<th>float</th>
<th>人脸置信分数</th>
</tr>
</table>
<br>
### **2.4 struct SeetaFaceInfoArray**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>data</th>
<th>const SeetaFaceInfo*</th>
<th>人脸信息数组</th>
</tr>
<tr>
<th>size</th>
<th>int</th>
<th>人脸信息数组长度</th>
</tr>
<table>
<br>
## 3 class FaceDetector ## 3 class FaceDetector
人脸检测器。 人脸检测器。<br>
### 3.1 Enum SeetaDevice ### 3.1 Enum SeetaDevice
模型运行的计算设备。<br> 模型运行的计算设备。<br>
|名称 |说明| <table border="1">
|---|---| <tr>
|SEETA_DEVICE_AUTO|自动检测,会优先使用 GPU| <th>名称</th>
|SEETA_DEVICE_CPU|使用CPU计算| <th>说明</th>
|SEETA_DEVICE_GPU|使用GPU计算| </tr>
<tr>
<th>SEETA_DEVICE_AUTO</th>
<th>自动检测,会优先使用 GPU</th>
</tr>
<tr>
<th>SEETA_DEVICE_CPU</th>
<th>使用CPU计算</th>
</tr>
<tr>
<th>SEETA_DEVICE_GPU</th>
<th>使用GPU计算</th>
</tr>
<table>
<br>
### 3.2 struct SeetaModelSetting ### 3.2 struct SeetaModelSetting
构造人脸检测器需要传入的结构体参数。<br> 构造人脸检测器需要传入的结构体参数。<br>
|参数 | 类型 |缺省值|说明| <table border="1">
|---|---|---|---| <tr>
|model|const char**| |检测器模型| <th>参数</th>
|id|int| |GPU id| <th>类型</th>
|device|SeetaDevice|AUTO |计算设备(CPU 或者 GPU)| <th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>model</th>
<th>const char**</th>
<th></th>
<th>检测器模型</th>
</tr>
<tr>
<th>id</th>
<th>int</th>
<th></th>
<th>GPU id</th>
</tr>
<tr>
<th>device</th>
<th>SeetaDevice</th>
<th>AUTO</th>
<th>计算设备(CPU 或者 GPU)</th>
</tr>
<table>
<br>
### 3.3 构造函数 ### 3.3 构造函数
#### FaceDetector #### FaceDetector
|参数 | 类型 |缺省值|说明| <table border="1">
|---|---|---|---| <tr>
|setting|const SeetaModelSetting&| |检测器结构参数| <th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>setting </th>
<th>const SeetaModelSetting& </th>
<th> </th>
<th>检测器结构参数 </th>
</tr>
<table>
<br>
### 3.4 成员函数 ### 3.4 成员函数
...@@ -78,12 +198,30 @@ ...@@ -78,12 +198,30 @@
输入彩色图像,检测其中的人脸。<br> 输入彩色图像,检测其中的人脸。<br>
|参数 | 类型 |缺省值|说明| <table border="1">
|---|---|---|---| <tr>
|image|const SeetaImageData&| |输入的图像数据| <th>参数</th>
|返回值|SeetaFaceInfoArray| |人脸信息数组| <th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>image </th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 输入的图像数据</th>
</tr>
<tr>
<th>返回值 </th>
<th>SeetaFaceInfoArray </th>
<th> </th>
<th> 人脸信息数组 </th>
</tr>
<table>
<br>
#### set #### set
设置人脸检测器相关属性值。其中<br> 设置人脸检测器相关属性值。其中<br>
**PROPERTY_MIN_FACE_SIZE**: 表示人脸检测器可以检测到的最小人脸,该值越小,支持检测到的人脸尺寸越小,检测速度越慢,默认值为20;<br> **PROPERTY_MIN_FACE_SIZE**: 表示人脸检测器可以检测到的最小人脸,该值越小,支持检测到的人脸尺寸越小,检测速度越慢,默认值为20;<br>
**PROPERTY_THRESHOLD**: **PROPERTY_THRESHOLD**:
...@@ -91,21 +229,58 @@ ...@@ -91,21 +229,58 @@
**PROPERTY_MAX_IMAGE_WIDTH****PROPERTY_MAX_IMAGE_HEIGHT**: **PROPERTY_MAX_IMAGE_WIDTH****PROPERTY_MAX_IMAGE_HEIGHT**:
分别表示支持输入的图像的最大宽度和高度;<br> 分别表示支持输入的图像的最大宽度和高度;<br>
**PROPERTY_NUMBER_THREADS**: **PROPERTY_NUMBER_THREADS**:
表示人脸检测器计算线程数,默认为 4. 表示人脸检测器计算线程数,默认为 4.<br>
|参数 | 类型 |缺省值|说明| <table border="1">
|---|---|---|---| <tr>
|property|Property||人脸检测器属性类别| <th>参数</th>
|value|double||设置的属性值| <th>类型</th>
|返回值|void| | | | <th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>property </th>
<th>Property </th>
<th> </th>
<th> 人脸检测器属性类别</th>
</tr>
<tr>
<th> value</th>
<th> double</th>
<th> </th>
<th> 设置的属性值 </th>
</tr>
<tr>
<th> 返回值</th>
<th>void </th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### get #### get
获取人脸检测器相关属性值。<br>
|参数 | 类型 |缺省值|说明|
|---|---|---|---|
|property|Property||人脸检测器属性类别|
|返回值|double||对应的人脸属性值|
获取人脸检测器相关属性值。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>property </th>
<th> Property</th>
<th> </th>
<th> 人脸检测器属性类别</th>
</tr>
<tr>
<th> 返回值</th>
<th>double </th>
<th> </th>
<th> 对应的人脸属性值 </th>
</tr>
<table>
<br>
\ No newline at end of file
# 人脸跟踪器
# 人脸跟踪器
## **1. 接口简介** <br>
人脸跟踪器会对输入的彩色图像或者灰度图像中的人脸进行跟踪,并返回所有跟踪到的人脸信息。<br>
## **2. 类型说明**<br>
### **2.1 struct SeetaImageData**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>data</th>
<th>uint8_t*</th>
<th>图像数据</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>图像的宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>图像的高度</th>
</tr>
<tr>
<th>channels</th>
<th>int32_t</th>
<th>图像的通道数</th>
</tr>
</table>
<br>
说明:存储彩色(三通道)或灰度(单通道)图像,像素连续存储,行优先,采用 BGR888 格式存放彩色图像,单字节灰度值存放灰度图像。<br>
### **2.2 struct SeetaRect**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>x</th>
<th>int32_t</th>
<th>人脸区域左上角横坐标</th>
</tr>
<tr>
<th>y</th>
<th>int32_t</th>
<th>人脸区域左上角纵坐标</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>人脸区域宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>人脸区域高度</th>
</tr>
</table>
<br>
### **2.3 struct SeetaTrackingFaceInfo**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>pos</th>
<th>SeetaRect</th>
<th>人脸位置</th>
</tr>
<tr>
<th>score</th>
<th>float</th>
<th>人脸置信分数</th>
</tr>
<tr>
<th>frame_no</th>
<th>int</th>
<th>视频帧的索引</th>
</tr>
<tr>
<th>PID</th>
<th>int</th>
<th>跟踪的人脸标识id</th>
</tr>
</table>
<br>
### **2.4 struct SeetaTrackingFaceInfoArray**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>data</th>
<th>const SeetaTrackingFaceInfo*</th>
<th>人脸信息数组</th>
</tr>
<tr>
<th>size</th>
<th>int</th>
<th>人脸信息数组长度</th>
</tr>
<table>
<br>
## 3 class FaceTracker
人脸跟踪器。<br>
### 3.1 Enum SeetaDevice
模型运行的计算设备。<br>
<table border="1">
<tr>
<th>名称</th>
<th>说明</th>
</tr>
<tr>
<th>SEETA_DEVICE_AUTO</th>
<th>自动检测,会优先使用 GPU</th>
</tr>
<tr>
<th>SEETA_DEVICE_CPU</th>
<th>使用CPU计算</th>
</tr>
<tr>
<th>SEETA_DEVICE_GPU</th>
<th>使用GPU计算</th>
</tr>
<table>
<br>
### 3.2 struct SeetaModelSetting
构造人脸跟踪器需要传入的结构体参数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>model</th>
<th>const char**</th>
<th></th>
<th>检测器模型</th>
</tr>
<tr>
<th>id</th>
<th>int</th>
<th></th>
<th>GPU id</th>
</tr>
<tr>
<th>device</th>
<th>SeetaDevice</th>
<th>AUTO</th>
<th>计算设备(CPU 或者 GPU)</th>
</tr>
<table>
<br>
### 3.3 构造函数
#### FaceTrakcer
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>setting </th>
<th>const SeetaModelSetting& </th>
<th> </th>
<th>检测器结构参数 </th>
</tr>
<tr>
<th>video_width </th>
<th>int </th>
<th> </th>
<th>视频的宽度 </th>
</tr>
<tr>
<th>video_height </th>
<th>int </th>
<th> </th>
<th>视频的高度 </th>
</tr>
<table>
<br>
### 3.4 成员函数
#### SetSingleCalculationThreads
设置底层的计算线程数量。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> num</th>
<th> int</th>
<th> </th>
<th> 线程数量</th>
</tr>
<table>
<br>
#### Track
对视频帧中的人脸进行跟踪。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>image </th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 输入的图像数据</th>
</tr>
<tr>
<th>返回值 </th>
<th>SeetaTrackingFaceInfoArray </th>
<th> </th>
<th> 跟踪到的人脸信息数组 </th>
</tr>
<table>
<br>
#### Track
对视频帧中的人脸进行跟踪。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>image </th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 输入的图像数据</th>
</tr>
<tr>
<th>frame_no </th>
<th> int</th>
<th> </th>
<th> 视频帧索引</th>
</tr>
<tr>
<th>返回值 </th>
<th>SeetaTrackingFaceInfoArray </th>
<th> </th>
<th> 跟踪到的人脸信息数组 </th>
</tr>
<table>
<br>
#### SetMinFaceSize
设置检测器的最小人脸大小。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>size </th>
<th>int32_t </th>
<th> </th>
<th> 最小人脸大小</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
说明:size 的大小保证大于等于20,size的值越小,能够检测到的人脸的尺寸越小,检测速度越慢。<br>
#### GetMinFaceSize
获取最小人脸的大小。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> int32_t</th>
<th> </th>
<th> 最小人脸大小</th>
</tr>
<table>
<br>
#### SetThreshold
设置检测器的检测阈值。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> thresh</th>
<th> float</th>
<th> </th>
<th> 检测阈值</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### GetScoreThreshold
获取检测器检测阈值。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> float</th>
<th> </th>
<th> 检测阈值</th>
</tr>
<table>
<br>
#### SetVideoStable
设置以稳定模式输出人脸跟踪结果。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> stable</th>
<th> bool</th>
<th> </th>
<th> 是否是稳定模式</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
说明:只有在视频中连续跟踪时,才使用此方法。<br>
#### GetVideoStable
获取当前是否是稳定工作模式。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> bool</th>
<th> </th>
<th> 是否是稳定模式</th>
</tr>
<table>
<br>
\ No newline at end of file
# 人脸特征点检测器
# 人脸特征点检测器
## **1. 接口简介** <br>
人脸特征点检测器要求输入原始图像数据和人脸位置,返回人脸 5 个或者其他数量的的特征点的坐标(特征点的数量和加载的模型有关)。<br>
## **2. 类型说明**<br>
### **2.1 struct SeetaImageData**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>data</th>
<th>uint8_t*</th>
<th>图像数据</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>图像的宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>图像的高度</th>
</tr>
<tr>
<th>channels</th>
<th>int32_t</th>
<th>图像的通道数</th>
</tr>
</table>
<br>
说明:存储彩色(三通道)或灰度(单通道)图像,像素连续存储,行优先,采用 BGR888 格式存放彩色图像,单字节灰度值存放灰度图像。<br>
### **2.2 struct SeetaRect**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>x</th>
<th>int32_t</th>
<th>人脸区域左上角横坐标</th>
</tr>
<tr>
<th>y</th>
<th>int32_t</th>
<th>人脸区域左上角纵坐标</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>人脸区域宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>人脸区域高度</th>
</tr>
</table>
<br>
### **2.3 struct SeetaPointF**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th> x</th>
<th> double</th>
<th>人脸特征点横坐标 </th>
</tr>
<tr>
<th> y</th>
<th> double</th>
<th> 人脸特征点纵坐标</th>
</tr>
</table>
<br>
## 3 class FaceLandmarker
人脸特征点检测器。<br>
### 3.1 Enum SeetaDevice
模型运行的计算设备。<br>
<table border="1">
<tr>
<th>名称</th>
<th>说明</th>
</tr>
<tr>
<th>SEETA_DEVICE_AUTO </th>
<th>自动检测,会优先使用 GPU </th>
</tr>
<tr>
<th> SEETA_DEVICE_CPU</th>
<th> 使用CPU计算</th>
</tr>
<tr>
<th>SEETA_DEVICE_GPU </th>
<th>使用GPU计算 </th>
</tr>
</table>
<br>
### 3.2 struct SeetaModelSetting
构造人脸特征点检测器需要传入的结构体参数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> model</th>
<th> const char**</th>
<th> </th>
<th> 检测器模型</th>
</tr>
<tr>
<th> id</th>
<th> int</th>
<th> </th>
<th> GPU id</th>
</tr>
<tr>
<th> device</th>
<th> SeetaDevice</th>
<th> AUTO</th>
<th> 计算设备(CPU 或者 GPU)</th>
</tr>
<table>
<br>
### 3.3 构造函数
#### FaceLandmarker
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> setting</th>
<th> const SeetaModelSetting&</th>
<th> </th>
<th> 检测器结构参数</th>
</tr>
<table>
<br>
### 3.4 成员函数
#### number
获取模型对应的特征点数组长度。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> int</th>
<th> </th>
<th> 模型特征点数组长度</th>
</tr>
<table>
<br>
#### mark
获取人脸特征点。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 图像原始数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> points</th>
<th> SeetaPointF*</th>
<th> </th>
<th> 获取的人脸特征点数组(需预分配好数组长度,长度为number()返回的值)</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### mark
获取人脸特征点和遮挡信息。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 图像原始数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> points</th>
<th> SeetaPointF*</th>
<th> 获取的人脸特征点数组(需预分配好数组长度,长度为number()返回的值)</th>
<th> </th>
</tr>
<tr>
<th>mask </th>
<th> int32_t</th>
<th> </th>
<th> 获取人脸特征点位置对应的遮挡信息数组(需预分配好数组长度,长度为number()返回的值), 其中值为1表示被遮挡,0表示未被遮挡</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### mark
获取人脸特征点。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 图像原始数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> 返回值</th>
<th> std::vector<SeetaPointF> </th>
<th> </th>
<th> 获取的人脸特征点数组</th>
</tr>
<table>
<br>
#### mark_v2
获取人脸特征点和遮挡信息。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 图像原始数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> 返回值</th>
<th> std::vector<PointWithMask> </th>
<th> </th>
<th> 获取人脸特征点和是否遮挡数组</th>
</tr>
<table>
<br>
\ No newline at end of file
# 近红外活体识别器
# 近红外活体识别器
## **1. 接口简介** <br>
近红外活体识别根据输入的近红外图像数据、人脸位置和人脸特征点,对输入人脸进行活体的判断,并返回人脸活体的状态。<br>
## **2. 类型说明**<br>
### **2.1 struct SeetaImageData**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>data</th>
<th>uint8_t*</th>
<th>图像数据</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>图像的宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>图像的高度</th>
</tr>
<tr>
<th>channels</th>
<th>int32_t</th>
<th>图像的通道数</th>
</tr>
</table>
<br>
说明:存储彩色(三通道)或灰度(单通道)图像,像素连续存储,行优先,采用 BGR888 格式存放彩色图像,单字节灰度值存放灰度图像。<br>
### **2.2 struct SeetaRect**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th>x</th>
<th>int32_t</th>
<th>人脸区域左上角横坐标</th>
</tr>
<tr>
<th>y</th>
<th>int32_t</th>
<th>人脸区域左上角纵坐标</th>
</tr>
<tr>
<th>width</th>
<th>int32_t</th>
<th>人脸区域宽度</th>
</tr>
<tr>
<th>height</th>
<th>int32_t</th>
<th>人脸区域高度</th>
</tr>
</table>
<br>
### **2.3 struct SeetaPointF**<br>
<table border="1">
<tr>
<th>名称</th>
<th>类型</th>
<th>说明</th>
</tr>
<tr>
<th> x</th>
<th> double</th>
<th>人脸特征点横坐标 </th>
</tr>
<tr>
<th> y</th>
<th> double</th>
<th> 人脸特征点纵坐标</th>
</tr>
</table>
<br>
## 3 class SeetaNirFaceAntiSpoofing
近红外活体识别器。<br>
### 3.1 Enum SeetaDevice
模型运行的计算设备。<br>
<table border="1">
<tr>
<th>名称</th>
<th>说明</th>
</tr>
<tr>
<th>SEETA_DEVICE_AUTO </th>
<th>自动检测,会优先使用 GPU </th>
</tr>
<tr>
<th> SEETA_DEVICE_CPU</th>
<th> 使用CPU计算</th>
</tr>
<tr>
<th>SEETA_DEVICE_GPU </th>
<th>使用GPU计算 </th>
</tr>
</table>
<br>
### 3.2 struct SeetaModelSetting
构造活体识别器需要传入的结构体参数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> model</th>
<th> const char**</th>
<th> </th>
<th> 识别器模型</th>
</tr>
<tr>
<th> id</th>
<th> int</th>
<th> </th>
<th> GPU id</th>
</tr>
<tr>
<th> device</th>
<th> SeetaDevice</th>
<th> AUTO</th>
<th> 计算设备(CPU 或者 GPU)</th>
</tr>
<table>
<br>
### 3.3 构造函数
#### SeetaNirFaceAntiSpoofing
构造活体识别器,需要在构造的时候传入识别器结构参数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> setting</th>
<th> const SeetaModelSetting&</th>
<th> </th>
<th> 识别器接口参数</th>
</tr>
<table>
<br>
### 3.4 成员函数
#### predict
基于单帧图像对人脸是否为活体进行判断。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 原始图像数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> points</th>
<th> const SeetaPointF*</th>
<th> </th>
<th> 人脸特征点数组</th>
</tr>
<tr>
<th> 返回值</th>
<th> Status</th>
<th> </th>
<th> 人脸活体的状态</th>
</tr>
<table>
<br>
说明:Status 活体状态可取值为REAL(真人)、SPOOF(假体)、FUZZY(由于图像质量问题造成的无法判断)和 DETECTING(正在检测),DETECTING 状态针对于 PredicVideo 模式。<br>
#### predictVideo
基于连续视频序列对人脸是否为活体进行判断。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> image</th>
<th> const SeetaImageData&</th>
<th> </th>
<th> 原始图像数据</th>
</tr>
<tr>
<th> face</th>
<th> const SeetaRect&</th>
<th> </th>
<th> 人脸位置</th>
</tr>
<tr>
<th> points</th>
<th> const SeetaPointF*</th>
<th> </th>
<th> 人脸特征点数组</th>
</tr>
<tr>
<th> 返回值</th>
<th> Status</th>
<th> </th>
<th> 人脸活体的状态</th>
</tr>
<table>
<br>
说明:Status 活体状态可取值为REAL(真人)、SPOOF(假体)、FUZZY(由于图像质量问题造成的无法判断)和 DETECTING(正在检测),DETECTING 状态针对于 PredicVideo 模式。<br>
#### resetVideo
重置活体识别结果,开始下一次 predictVideo 识别过程。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> void</th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### GetPreFasScore
获取活体检测内部分数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> double</th>
<th> </th>
<th> 活体分数</th>
</tr>
<table>
<br>
#### SetFrameNumForVideo
设置 Video 模式中识别视频帧数,当输入帧数为该值以后才会有活体的
真假结果。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> frameNumForVideo</th>
<th> const int</th>
<th> </th>
<th> video模式下活体需求帧数</th>
</tr>
<table>
<br>
#### GetVideoFrameCount
获取video模式下活体需求帧数。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th> 返回值</th>
<th> int</th>
<th> </th>
<th> video模式下活体需求帧数</th>
</tr>
<table>
<br>
#### set
设置人脸检测器相关属性值。其中<br>
**PROPERTY_NUMBER_THREADS**:
表示人脸检测器计算线程数,默认为 4.<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>property </th>
<th>Property </th>
<th> </th>
<th> 人脸检测器属性类别</th>
</tr>
<tr>
<th> value</th>
<th> double</th>
<th> </th>
<th> 设置的属性值 </th>
</tr>
<tr>
<th> 返回值</th>
<th>void </th>
<th> </th>
<th> </th>
</tr>
<table>
<br>
#### get
获取人脸检测器相关属性值。<br>
<table border="1">
<tr>
<th>参数</th>
<th>类型</th>
<th>缺省</th>
<th>说明</th>
</tr>
<tr>
<th>property </th>
<th> Property</th>
<th> </th>
<th> 人脸检测器属性类别</th>
</tr>
<tr>
<th> 返回值</th>
<th>double </th>
<th> </th>
<th> 对应的人脸属性值 </th>
</tr>
<table>
<br>
\ No newline at end of file
Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!