Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
Dragon
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 3b990761
authored
Aug 14, 2018
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Merge into the DimensionOp
1 parent
abae2712
Hide whitespace changes
Inline
Side-by-side
Showing
59 changed files
with
1032 additions
and
556 deletions
Docker/ubuntu-16.04-cpu-openblas/Dockerfile
Docker/ubuntu-16.04-cuda9.0-cudnn7/Dockerfile
Dragon/include/core/common.h
Dragon/include/core/operator.h
Dragon/include/core/tensor.h
Dragon/include/core/types.h
Dragon/include/operators/ndarray/dimension_op.h
Dragon/include/operators/ndarray/expand_dims_op.h
Dragon/include/operators/ndarray/flatten_op.h
Dragon/include/operators/ndarray/reshape_op.h
Dragon/include/operators/vision/conv_op_base.h
Dragon/modules/cxx/device.cc
Dragon/modules/cxx/dragon.cc
Dragon/modules/cxx/dragon.h
Dragon/modules/python/dragon.cc
Dragon/modules/python/py_tensor.h
Dragon/modules/python/py_types.h
Dragon/python/dragon/core/tensor_utils.py
Dragon/python/dragon/docs/contents/ops.rst
Dragon/python/dragon/io/data_reader.py
Dragon/python/dragon/operators/ndarray.py
Dragon/python/dragon/ops.py
Dragon/python/dragon/protos/dragon.proto
Dragon/python/dragon/protos/dragon_pb2.py
Dragon/python/dragon/version.py
Dragon/python/dragon/vm/torch/module.py
Dragon/python/dragon/vm/torch/nn/__init__.py
Dragon/python/dragon/vm/torch/nn/modules/activation.py
Dragon/python/dragon/vm/torch/ops/__init__.py
Dragon/python/dragon/vm/torch/ops/builtin.py
Dragon/python/dragon/vm/torch/ops/control_flow.py
Dragon/python/dragon/vm/torch/ops/modules/shape.py
Dragon/python/dragon/vm/torch/ops/ndarray.py
Dragon/python/dragon/vm/torch/serialization.py
Dragon/python/dragon/vm/torch/tensor.py
Dragon/python/dragon/vm/torch/tensor_uitls.py
Dragon/python/dragon/vm/torch/utils/data/io/data_reader.py
Dragon/python/setup.py
Dragon/src/contrib/rcnn/bbox_utils.h
Dragon/src/contrib/rcnn/proposal_op.cc
Dragon/src/core/graph.cc
Dragon/src/operators/loss/sigmoid_cross_entropy_op.cc
Dragon/src/operators/loss/sigmoid_focal_loss_op.cc
Dragon/src/operators/loss/softmax_focal_loss_op.cc
Dragon/src/operators/loss/sparse_softmax_cross_entropy_op.cc
Dragon/src/operators/misc/gradient_op.cc
Dragon/src/operators/mpi/mpi_broadcast_op.cc
Dragon/src/operators/mpi/mpi_gather_op.cc
Dragon/src/operators/ndarray/crop_op.cc
Dragon/src/operators/ndarray/expand_dims_op.cc
Dragon/src/operators/ndarray/flatten_op.cc
Dragon/src/operators/ndarray/pad_op.cc
Dragon/src/operators/ndarray/random_pick_op.cc
Dragon/src/operators/ndarray/reshape_op.cc
Dragon/src/operators/ndarray/squeeze_op.cc
Dragon/src/operators/ndarray/tile_op.cc
Dragon/src/operators/vision/lrn_op.cc
Dragon/src/protos/caffemodel.proto
Dragon/src/protos/dragon.proto
Docker/ubuntu-16.04-cpu-openblas/Dockerfile
View file @
3b99076
...
...
@@ -18,7 +18,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
python3-tk
\
&& rm -rf /var/lib/apt/lists/*
RUN
pip3 install --no-cache-dir --upgrade setuptools wheel
&&
\
RUN
pip3 install --no-cache-dir --upgrade setuptools wheel
-i https://pypi.tuna.tsinghua.edu.cn/simple
&&
\
pip3 install --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
\
numpy
\
protobuf
\
...
...
@@ -27,6 +27,7 @@ RUN pip3 install --no-cache-dir --upgrade setuptools wheel && \
six
\
Pillow
matplotlib \
scikit-image \
pyyaml \
cython
...
...
Docker/ubuntu-16.04-cuda9.0-cudnn7/Dockerfile
View file @
3b99076
...
...
@@ -21,7 +21,7 @@ RUN rm /etc/apt/sources.list.d/cuda.list && rm /etc/apt/sources.list.d/nvidia-ml
python3-tk
\
&&
rm -rf /var/lib/apt/lists/
*
RUN
pip3 install --no-cache-dir --upgrade setuptools wheel
&&
\
RUN
pip3 install --no-cache-dir --upgrade setuptools wheel
-i https://pypi.tuna.tsinghua.edu.cn/simple
&&
\
pip3 install --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
\
numpy
\
protobuf
\
...
...
@@ -30,6 +30,7 @@ RUN pip3 install --no-cache-dir --upgrade setuptools wheel && \
six \
Pillow \
matplotlib \
scikit-image \
pyyaml \
cython
...
...
Dragon/include/core/common.h
View file @
3b99076
...
...
@@ -52,9 +52,9 @@ using Set = std::unordered_set<Value> ;
/*
* Define the Kernel version.
*
* | Major(2) | Minor(2) | Patch(
09
) |
* | Major(2) | Minor(2) | Patch(
10
) |
*/
#define DRAGON_VERSION 22
09
#define DRAGON_VERSION 22
10
/*
* Define the default random seed.
...
...
Dragon/include/core/operator.h
View file @
3b99076
...
...
@@ -114,7 +114,7 @@ class Operator : public OperatorBase {
virtual
void
MakeResource
();
virtual
void
CleanResource
();
void
MemorySwitch
()
{
v
irtual
v
oid
MemorySwitch
()
{
for
(
auto
*
I
:
inputs_
)
if
(
I
->
name
()
!=
"ignore"
)
I
->
SwitchToDevice
();
for
(
auto
*
O
:
outputs_
)
...
...
Dragon/include/core/tensor.h
View file @
3b99076
...
...
@@ -40,8 +40,9 @@ class Tensor {
capacity_
=
0
;
}
}
else
{
if
(
ex_memory_
&&
TIndex
(
ex_memory_
->
nbytes
())
<
TIndex
(
new_size
*
meta_
.
itemsize
()))
{
if
(
ex_memory_
&&
!
is_shared_
&&
TIndex
(
ex_memory_
->
nbytes
())
<
TIndex
(
new_size
*
meta_
.
itemsize
()))
{
delete
ex_memory_
;
ex_memory_
=
nullptr
;
capacity_
=
0
;
...
...
@@ -232,18 +233,18 @@ class Tensor {
return
static_cast
<
const
T
*>
(
raw_data
<
Context
>
());
}
template
<
class
DstCTX
,
class
SrcCTX
>
inline
void
Copy
(
const
Tensor
&
other
)
{
template
<
class
Context
>
inline
void
Copy
From
(
const
Tensor
&
other
)
{
CHECK_EQ
(
size_
,
other
.
size_
);
auto
*
src
=
other
.
template
raw_data
<
SrcCTX
>
();
auto
*
dst
=
raw_mutable_data
<
DstCTX
>
(
other
.
meta_
);
auto
*
src
=
other
.
template
raw_data
<
Context
>
();
auto
*
dst
=
raw_mutable_data
<
Context
>
(
other
.
meta_
);
if
(
dst
==
src
)
return
;
if
(
TypeMeta
::
Id
<
DstCTX
>
()
==
if
(
TypeMeta
::
Id
<
Context
>
()
==
TypeMeta
::
Id
<
CPUContext
>
())
{
CPUContext
::
Memcpy
<
DstCTX
,
SrcCTX
>
(
nbytes
(),
dst
,
src
);
}
else
if
(
TypeMeta
::
Id
<
DstCTX
>
()
==
CPUContext
::
Memcpy
<
Context
,
Context
>
(
nbytes
(),
dst
,
src
);
}
else
if
(
TypeMeta
::
Id
<
Context
>
()
==
TypeMeta
::
Id
<
CUDAContext
>
())
{
CUDAContext
::
Memcpy
<
DstCTX
,
SrcCTX
>
(
nbytes
(),
dst
,
src
);
CUDAContext
::
Memcpy
<
Context
,
Context
>
(
nbytes
(),
dst
,
src
);
}
}
...
...
@@ -253,6 +254,8 @@ class Tensor {
own_mem_
=
false
;
}
inline
void
Share
(
MixedMemory
*
mem
)
{
Move
(
mem
);
is_shared_
=
true
;
}
inline
void
Reset
()
{
size_
=
capacity_
=
0
;
meta_
=
TypeMeta
();
...
...
@@ -271,7 +274,8 @@ class Tensor {
string
name_
;
shared_ptr
<
MixedMemory
>
memory_
;
MixedMemory
*
ex_memory_
=
nullptr
;
bool
is_corrupted_
=
false
,
own_mem_
=
true
;
bool
is_corrupted_
=
false
,
is_shared_
=
false
;
bool
own_mem_
=
true
;
};
}
// namespace dragon
...
...
Dragon/include/core/types.h
View file @
3b99076
...
...
@@ -49,7 +49,8 @@ inline const TypeMeta& TypeStringToMeta(
{
"int64"
,
TypeMeta
::
Make
<
int64_t
>
()
},
{
"float64"
,
TypeMeta
::
Make
<
double
>
()
},
{
"float16"
,
TypeMeta
::
Make
<
float16
>
()
},
{
"uint8"
,
TypeMeta
::
Make
<
uint8_t
>
()
}
{
"uint8"
,
TypeMeta
::
Make
<
uint8_t
>
()
},
{
"int8"
,
TypeMeta
::
Make
<
char
>
()
},
};
static
TypeMeta
unknown_type
;
return
s2m_type_map
.
count
(
str_type
)
?
...
...
@@ -65,7 +66,8 @@ inline const std::string TypeMetaToString(
{
TypeMeta
::
Id
<
int64_t
>
(),
"int64"
},
{
TypeMeta
::
Id
<
double
>
(),
"float64"
,
},
{
TypeMeta
::
Id
<
float16
>
(),
"float16"
},
{
TypeMeta
::
Id
<
uint8_t
>
(),
"uint8"
}
{
TypeMeta
::
Id
<
uint8_t
>
(),
"uint8"
},
{
TypeMeta
::
Id
<
char
>
(),
"int8"
}
};
return
m2s_type_map
.
count
(
meta
.
id
())
?
m2s_type_map
[
meta
.
id
()]
:
"unknown"
;
...
...
Dragon/include/operators/ndarray/dimension_op.h
0 → 100644
View file @
3b99076
// ------------------------------------------------------------
// Copyright (c) 2017-present, SeetaTech, Co.,Ltd.
//
// Licensed under the BSD 2-Clause License.
// You should have received a copy of the BSD 2-Clause License
// along with the software. If not, See,
//
// <https://opensource.org/licenses/BSD-2-Clause>
//
// -------------------------------------------------------------
#ifndef DRAGON_OPERATORS_NDARRAY_DIMENSION_OP_H_
#define DRAGON_OPERATORS_NDARRAY_DIMENSION_OP_H_
#include "core/operator.h"
namespace
dragon
{
/*********************************************
* *
* Base *
* *
**********************************************/
template
<
class
Context
>
class
DimOpBase
:
public
Operator
<
Context
>
{
public
:
USE_SIMPLE_CTOR_DTOR
(
DimOpBase
);
void
MemorySwitch
()
override
{
/* Disable the Memory Activation */
}
};
template
<
class
Context
>
class
DimGradientOpBase
:
public
Operator
<
Context
>
{
public
:
USE_SIMPLE_CTOR_DTOR
(
DimGradientOpBase
);
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
{
// simply copy the dY to dX
Output
(
0
)
->
ReshapeLike
(
Input
(
0
));
if
(
Output
(
0
)
->
name
()
!=
Input
(
-
1
).
name
())
Output
(
0
)
->
template
CopyFrom
<
Context
>
(
Input
(
-
1
));
}
};
#define DEFINE_DIMENSION_GRADIENT_OP(name) \
template <class Context> \
class name##GradientOp final : public DimGradientOpBase<Context> { \
public: \
name##GradientOp(const OperatorDef& def, Workspace* ws) \
: DimGradientOpBase<Context>(def, ws) {} \
};
/*********************************************
* *
* Reshape *
* *
**********************************************/
template
<
class
Context
>
class
ReshapeOp
final
:
public
DimOpBase
<
Context
>
{
public
:
ReshapeOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
DimOpBase
<
Context
>
(
def
,
ws
),
shape_like_desc
(
OperatorBase
::
Arg
<
string
>
(
"shape_like"
,
""
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
shape
);
}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
shape
);
string
shape_like_desc
;
vector
<
TIndex
>
require_shape
,
new_shape
;
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
ReshapeOp
,
shape
);
DEFINE_DIMENSION_GRADIENT_OP
(
Reshape
);
/*********************************************
* *
* Flatten *
* *
**********************************************/
template
<
class
Context
>
class
FlattenOp
final
:
public
DimOpBase
<
Context
>
{
public
:
FlattenOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
DimOpBase
<
Context
>
(
def
,
ws
),
axis
(
OperatorBase
::
Arg
<
int
>
(
"axis"
,
0
)),
num_axes
(
OperatorBase
::
Arg
<
int
>
(
"num_axes"
,
-
1
)),
keep_axes
(
OperatorBase
::
Arg
<
int
>
(
"keep_axes"
,
INT_MAX
))
{}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
TIndex
axis
,
num_axes
,
keep_axes
;
};
DEFINE_DIMENSION_GRADIENT_OP
(
Flatten
);
/*********************************************
* *
* Expand Dims *
* *
**********************************************/
template
<
class
Context
>
class
ExpandDimsOp
final
:
public
DimOpBase
<
Context
>
{
public
:
ExpandDimsOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
DimOpBase
<
Context
>
(
def
,
ws
),
axis
(
OperatorBase
::
Arg
<
int
>
(
"axis"
,
INT_MAX
))
{
if
(
axis
==
INT_MAX
)
LOG
(
FATAL
)
<<
"Excepted a axis to insert the new dim."
;
}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
TIndex
axis
;
};
DEFINE_DIMENSION_GRADIENT_OP
(
ExpandDims
);
/*********************************************
* *
* Squeeze *
* *
**********************************************/
template
<
class
Context
>
class
SqueezeOp
final
:
public
DimOpBase
<
Context
>
{
public
:
SqueezeOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
DimOpBase
<
Context
>
(
def
,
ws
),
axis
(
OperatorBase
::
Arg
<
int
>
(
"axis"
,
INT_MAX
))
{}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
TIndex
axis
;
};
DEFINE_DIMENSION_GRADIENT_OP
(
Squeeze
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_RESHAPE_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/expand_dims_op.h
deleted
100644 → 0
View file @
abae271
// ------------------------------------------------------------
// Copyright (c) 2017-present, SeetaTech, Co.,Ltd.
//
// Licensed under the BSD 2-Clause License.
// You should have received a copy of the BSD 2-Clause License
// along with the software. If not, See,
//
// <https://opensource.org/licenses/BSD-2-Clause>
//
// -------------------------------------------------------------
#ifndef DRAGON_OPERATORS_NDARRAY_EXPAND_DIMS_OP_H_
#define DRAGON_OPERATORS_NDARRAY_EXPAND_DIMS_OP_H_
#include "core/operator.h"
namespace
dragon
{
template
<
class
Context
>
class
ExpandDimsOp
final
:
public
Operator
<
Context
>
{
public
:
ExpandDimsOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
def
,
ws
),
axis
(
OperatorBase
::
Arg
<
int
>
(
"axis"
,
-
1
))
{}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
TIndex
axis
;
};
template
<
class
Context
>
class
ExpandDimsGradientOp
final
:
public
Operator
<
Context
>
{
public
:
USE_SIMPLE_CTOR_DTOR
(
ExpandDimsGradientOp
);
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
};
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_EXPAND_DIMS_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/flatten_op.h
deleted
100644 → 0
View file @
abae271
// ------------------------------------------------------------
// Copyright (c) 2017-present, SeetaTech, Co.,Ltd.
//
// Licensed under the BSD 2-Clause License.
// You should have received a copy of the BSD 2-Clause License
// along with the software. If not, See,
//
// <https://opensource.org/licenses/BSD-2-Clause>
//
// -------------------------------------------------------------
#ifndef DRAGON_OPERATORS_NDARRAY_FLATTEN_OP_H_
#define DRAGON_OPERATORS_NDARRAY_FLATTEN_OP_H_
#include "core/operator.h"
namespace
dragon
{
template
<
class
Context
>
class
FlattenOp
final
:
public
Operator
<
Context
>
{
public
:
FlattenOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
def
,
ws
),
axis
(
OperatorBase
::
Arg
<
int
>
(
"axis"
,
0
)),
num_axes
(
OperatorBase
::
Arg
<
int
>
(
"num_axes"
,
-
1
)),
keep_axes
(
OperatorBase
::
Arg
<
int
>
(
"keep_axes"
,
INT_MAX
))
{}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
void
SqueezeRun
();
void
KeepRun
();
protected
:
TIndex
axis
,
num_axes
,
keep_axes
;
};
template
<
class
Context
>
class
FlattenGradientOp
final
:
public
Operator
<
Context
>
{
public
:
USE_SIMPLE_CTOR_DTOR
(
FlattenGradientOp
);
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
};
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_FLATTEN_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/reshape_op.h
deleted
100644 → 0
View file @
abae271
// ------------------------------------------------------------
// Copyright (c) 2017-present, SeetaTech, Co.,Ltd.
//
// Licensed under the BSD 2-Clause License.
// You should have received a copy of the BSD 2-Clause License
// along with the software. If not, See,
//
// <https://opensource.org/licenses/BSD-2-Clause>
//
// -------------------------------------------------------------
#ifndef DRAGON_OPERATORS_NDARRAY_RESHAPE_OP_H_
#define DRAGON_OPERATORS_NDARRAY_RESHAPE_OP_H_
#include "core/operator.h"
namespace
dragon
{
template
<
class
Context
>
class
ReshapeOp
final
:
public
Operator
<
Context
>
{
public
:
ReshapeOp
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
def
,
ws
),
shape_like_desc
(
OperatorBase
::
Arg
<
string
>
(
"shape_like"
,
""
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
shape
);
}
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
protected
:
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
shape
);
string
shape_like_desc
;
vector
<
TIndex
>
require_shape
,
new_shape
;
};
template
<
class
Context
>
class
ReshapeGradientOp
final
:
public
Operator
<
Context
>
{
public
:
USE_SIMPLE_CTOR_DTOR
(
ReshapeGradientOp
);
USE_OPERATOR_FUNCTIONS
;
void
RunOnDevice
()
override
;
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
ReshapeOp
,
shape
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_RESHAPE_OP_H_
\ No newline at end of file
Dragon/include/operators/vision/conv_op_base.h
View file @
3b99076
...
...
@@ -55,7 +55,7 @@ class ConvOpBase : public Operator<Context> {
void
GradientReshape
();
virtual
void
ComputeOutputShape
();
virtual
bool
ReverseDimensions
()
=
0
;
virtual
bool
HasBias
()
=
0
;
virtual
bool
HasBias
()
{
NOT_IMPLEMENTED
;
return
true
;
}
template
<
typename
T
>
void
Wx
(
const
T
*
x
,
const
T
*
weights
,
T
*
y
,
bool
skip_im2col
=
false
);
...
...
Dragon/modules/cxx/device.cc
View file @
3b99076
...
...
@@ -16,12 +16,12 @@ int type_from_string(std::string type) {
}
Device
::
Device
()
:
device_type_
(
CPU
),
device_id_
(
0
)
{}
:
device_type_
(
0
),
device_id_
(
0
)
{}
Device
::
Device
(
std
::
string
device_type
,
int
device_id
)
:
device_type_
(
(
DeviceType
)
type_from_string
(
device_type
)),
device_id_
(
device_id
)
{}
:
device_type_
(
type_from_string
(
device_type
)),
device_id_
(
device_id
)
{}
Device
::
Device
(
std
::
string
device_type
)
:
device_type_
(
(
DeviceType
)
type_from_string
(
device_type
)),
device_id_
(
0
)
{}
:
device_type_
(
type_from_string
(
device_type
)),
device_id_
(
0
)
{}
}
//
namespace
dragon
\ No newline at end of file
Dragon/modules/cxx/dragon.cc
View file @
3b99076
...
...
@@ -6,7 +6,6 @@
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include "dragon.h"
#include "protos/dragon.pb.h"
#include "core/common.h"
#include "core/workspace.h"
#include "utils/caffemodel.h"
...
...
@@ -35,7 +34,8 @@ Workspace* ResetWorkspace(const std::string& name) {
g_workspaces
[
name
].
reset
(
new
Workspace
(
name
));
for
(
auto
&
sub_workspace
:
sub_workspaces
[
name
])
{
if
(
g_workspaces
.
count
(
sub_workspace
)
>
0
)
g_workspaces
[
name
]
->
MoveWorkspace
(
g_workspaces
[
sub_workspace
].
get
());
g_workspaces
[
name
]
->
MoveWorkspace
(
g_workspaces
[
sub_workspace
].
get
());
}
return
g_workspaces
[
name
].
get
();
}
...
...
@@ -49,7 +49,9 @@ void ReleaseWorkspace(const std::string& name) {
g_workspaces
.
erase
(
name
);
}
void
MoveWorkspace
(
Workspace
*
target_ws
,
Workspace
*
source_ws
)
{
void
MoveWorkspace
(
Workspace
*
target_ws
,
Workspace
*
source_ws
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
g_mutex
);
CHECK
(
source_ws
)
<<
"
\n
The given source workspace is invalid."
;
CHECK
(
target_ws
)
<<
"
\n
The given target workspace is invalid."
;
...
...
@@ -59,7 +61,9 @@ void MoveWorkspace(Workspace* target_ws, Workspace* source_ws) {
<<
"into the Workspace("
<<
target_ws
->
name
()
<<
")."
;
}
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
Workspace
*
ws
)
{
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
Workspace
*
ws
)
{
GraphDef
meta_graph
;
int
fd
=
open
(
graph_file
.
c_str
(),
O_RDONLY
);
CHECK_NE
(
fd
,
-
1
)
<<
"
\n
File not found: "
<<
graph_file
;
...
...
@@ -75,7 +79,10 @@ std::string CreateGraph(const std::string& graph_file, Workspace* ws) {
return
meta_graph
.
name
();
}
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
const
Device
&
device
,
Workspace
*
ws
)
{
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
const
Device
&
device
,
Workspace
*
ws
)
{
GraphDef
meta_graph
;
int
fd
=
open
(
graph_file
.
c_str
(),
O_RDONLY
);
CHECK_NE
(
fd
,
-
1
)
<<
"
\n
File not found: "
<<
graph_file
;
...
...
@@ -95,26 +102,29 @@ std::string CreateGraph(const std::string& graph_file, const Device& device, Wor
return
meta_graph
.
name
();
}
void
CreateTensor
(
const
std
::
string
&
name
,
Workspace
*
ws
)
{
void
CreateTensor
(
const
std
::
string
&
name
,
Workspace
*
ws
)
{
ws
->
CreateTensor
(
name
);
}
template
<
typename
T
>
void
FeedTensor
(
const
std
::
string
&
name
,
const
vector
<
TIndex
>&
shape
,
const
T
*
data
,
const
Device
&
device
,
Workspace
*
ws
)
{
void
FeedTensor
(
const
std
::
string
&
name
,
const
vector
<
TIndex
>&
shape
,
const
T
*
data
,
const
Device
&
device
,
Workspace
*
ws
)
{
Tensor
*
tensor
=
ws
->
CreateTensor
(
name
);
tensor
->
Reshape
(
shape
);
if
(
device
.
device_type
()
==
CUDA
)
{
if
(
device
.
device_type
()
==
1
)
{
CUDAContext
context
(
device
.
device_id
());
context
.
SwitchToDevice
();
tensor
->
mutable_data
<
T
,
CUDAContext
>
();
context
.
Memcpy
<
CUDAContext
,
CPUContext
>
(
tensor
->
nbytes
(),
tensor
->
raw_mutable_data
<
CUDAContext
>
(),
static_cast
<
const
void
*>
(
data
));
}
else
if
(
device
.
device_type
()
==
CPU
)
{
}
else
if
(
device
.
device_type
()
==
0
)
{
CPUContext
context
;
tensor
->
mutable_data
<
T
,
CPUContext
>
();
context
.
Memcpy
<
CPUContext
,
CPUContext
>
(
tensor
->
nbytes
(),
...
...
@@ -125,7 +135,9 @@ void FeedTensor(const std::string& name,
}
}
void
TransplantCaffeModel
(
const
std
::
string
&
input_model
,
const
std
::
string
&
output_model
)
{
void
TransplantCaffeModel
(
const
std
::
string
&
input_model
,
const
std
::
string
&
output_model
)
{
TensorProtos
protos
;
NetParameter
net_param
;
ReadProtoFromBinaryFile
(
input_model
.
c_str
(),
&
net_param
);
...
...
@@ -151,13 +163,16 @@ void TransplantCaffeModel(const std::string& input_model, const std::string& out
<<
", size: "
<<
blob
.
data_size
();
}
}
std
::
fstream
output
(
output_model
,
std
::
ios
::
out
|
std
::
ios
::
trunc
|
std
::
ios
::
binary
);
std
::
fstream
output
(
output_model
,
std
::
ios
::
out
|
std
::
ios
::
trunc
|
std
::
ios
::
binary
);
CHECK
(
protos
.
SerializeToOstream
(
&
output
));
LOG
(
INFO
)
<<
"save the model @: "
<<
output_model
<<
"......"
;
LOG
(
INFO
)
<<
"model format: DragonMoel"
;
}
void
LoadDragonmodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
){
void
LoadDragonmodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
){
TensorProtos
tensors
;
ReadProtoFromBinaryFile
(
model_file
.
c_str
(),
&
tensors
);
LOG
(
INFO
)
<<
"Restore From Model @: "
<<
model_file
<<
"......"
;
...
...
@@ -190,7 +205,9 @@ void LoadDragonmodel(const std::string& model_file, Workspace* ws){
}
}
void
LoadCaffemodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
){
void
LoadCaffemodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
){
NetParameter
net_param
;
ReadProtoFromBinaryFile
(
model_file
.
c_str
(),
&
net_param
);
std
::
string
scope
=
""
;
...
...
@@ -231,14 +248,17 @@ void LoadCaffemodel(const std::string& model_file, Workspace* ws){
}
}
void
RunGraph
(
const
std
::
string
&
graph_name
,
Workspace
*
ws
)
{
void
RunGraph
(
const
std
::
string
&
graph_name
,
Workspace
*
ws
)
{
ws
->
RunGraph
(
graph_name
,
""
,
""
);
}
template
<
typename
T
>
T
*
FetchTensor
(
const
std
::
string
&
name
,
vector
<
TIndex
>&
shape
,
Workspace
*
ws
){
T
*
FetchTensor
(
const
std
::
string
&
name
,
vector
<
TIndex
>&
shape
,
Workspace
*
ws
){
if
(
!
ws
->
HasTensor
(
name
)){
LOG
(
FATAL
)
<<
"Tensor("
<<
name
<<
")"
<<
" doesn't exist, try create it before."
;
...
...
@@ -251,13 +271,11 @@ T* FetchTensor(const std::string& name,
shape
=
tensor
->
dims
();
void
*
data
=
malloc
(
tensor
->
nbytes
());
if
(
tensor
->
memory_state
()
==
MixedMemory
::
STATE_AT_CUDA
)
{
CUDAContext
::
Memcpy
<
CPUContext
,
CUDAContext
>
(
tensor
->
nbytes
(),
data
,
tensor
->
raw_data
<
CUDAContext
>
());
CUDAContext
::
Memcpy
<
CPUContext
,
CUDAContext
>
(
tensor
->
nbytes
(),
data
,
tensor
->
raw_data
<
CUDAContext
>
());
}
else
{
CPUContext
::
Memcpy
<
CPUContext
,
CPUContext
>
(
tensor
->
nbytes
(),
data
,
tensor
->
raw_data
<
CPUContext
>
());
CPUContext
::
Memcpy
<
CPUContext
,
CPUContext
>
(
tensor
->
nbytes
(),
data
,
tensor
->
raw_data
<
CPUContext
>
());
}
return
static_cast
<
T
*>
(
data
);
}
...
...
@@ -266,4 +284,30 @@ void SetLogLevel(const std::string& level) {
SetLogDestination
(
StrToLogSeverity
(
level
));
}
template
float
*
FetchTensor
<
float
>
(
const
std
::
string
&
,
std
::
vector
<
TIndex
>&
,
Workspace
*
);
template
void
FeedTensor
<
float
>
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
float
*
,
const
Device
&
,
Workspace
*
);
template
void
FeedTensor
<
int
>
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
int
*
,
const
Device
&
,
Workspace
*
);
template
void
FeedTensor
<
uint8_t
>
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
uint8_t
*
,
const
Device
&
,
Workspace
*
);
}
//
namespace
dragon
\ No newline at end of file
Dragon/modules/cxx/dragon.h
View file @
3b99076
...
...
@@ -29,18 +29,16 @@ typedef int64_t TIndex;
class
Workspace
;
class
Device
{
enum
DeviceType
{
CPU
,
CUDA
};
public
:
EXPORT
Device
();
EXPORT
explicit
Device
(
std
::
string
device_type
);
EXPORT
Device
(
std
::
string
device_type
,
int
device_id
);
EXPORT
const
DeviceType
&
device_type
()
const
{
return
device_type_
;
}
EXPORT
const
int
&
device_type
()
const
{
return
device_type_
;
}
EXPORT
const
int
device_id
()
const
{
return
device_id_
;
}
private
:
DeviceType
device_type_
;
int
device_type_
;
int
device_id_
;
};
...
...
@@ -52,53 +50,48 @@ EXPORT void ReleaseWorkspace(const std::string& name);
EXPORT
void
MoveWorkspace
(
Workspace
*
main
,
Workspace
*
sub
);
EXPORT
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
Workspace
*
ws
);
EXPORT
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
Workspace
*
ws
);
EXPORT
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
const
Device
&
device
,
Workspace
*
ws
);
EXPORT
std
::
string
CreateGraph
(
const
std
::
string
&
graph_file
,
const
Device
&
device
,
Workspace
*
ws
);
EXPORT
void
RunGraph
(
const
std
::
string
&
graph_name
,
Workspace
*
ws
);
EXPORT
void
RunGraph
(
const
std
::
string
&
graph_name
,
Workspace
*
ws
);
EXPORT
void
CreateTensor
(
const
std
::
string
&
name
,
Workspace
*
ws
);
EXPORT
void
CreateTensor
(
const
std
::
string
&
name
,
Workspace
*
ws
);
template
<
typename
T
>
void
FeedTensor
(
const
std
::
string
&
name
,
const
std
::
vector
<
TIndex
>&
shape
,
const
T
*
data
,
const
Device
&
device
,
Workspace
*
ws
);
EXPORT
void
FeedTensor
(
const
std
::
string
&
name
,
const
std
::
vector
<
TIndex
>&
shape
,
const
T
*
data
,
const
Device
&
device
,
Workspace
*
ws
);
template
<
typename
T
>
T
*
FetchTensor
(
const
std
::
string
&
name
,
std
::
vector
<
TIndex
>&
shape
,
Workspace
*
ws
);
template
EXPORT
float
*
FetchTensor
(
const
std
::
string
&
,
std
::
vector
<
TIndex
>&
,
Workspace
*
);
template
EXPORT
void
FeedTensor
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
float
*
,
const
Device
&
,
Workspace
*
);
template
EXPORT
void
FeedTensor
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
int
*
,
const
Device
&
,
Workspace
*
);
template
EXPORT
void
FeedTensor
(
const
std
::
string
&
,
const
std
::
vector
<
TIndex
>&
,
const
uint8_t
*
,
const
Device
&
,
Workspace
*
);
EXPORT
void
LoadCaffemodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
);
EXPORT
void
TransplantCaffeModel
(
const
std
::
string
&
input_model
,
const
std
::
string
&
output_model
);
EXPORT
void
LoadDragonmodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
);
EXPORT
T
*
FetchTensor
(
const
std
::
string
&
name
,
std
::
vector
<
TIndex
>&
shape
,
Workspace
*
ws
);
EXPORT
void
LoadCaffemodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
);
EXPORT
void
TransplantCaffeModel
(
const
std
::
string
&
input_model
,
const
std
::
string
&
output_model
);
EXPORT
void
LoadDragonmodel
(
const
std
::
string
&
model_file
,
Workspace
*
ws
);
EXPORT
void
SetLogLevel
(
const
std
::
string
&
level
);
...
...
Dragon/modules/python/dragon.cc
View file @
3b99076
...
...
@@ -231,6 +231,7 @@ PyMethodDef* GetAllMethods() {
PYFUNC
(
RenameTensorCC
),
PYFUNC
(
TensorFromShapeCC
),
PYFUNC
(
TensorFromPyArrayCC
),
PYFUNC
(
TensorFromTensorCC
),
PYFUNC
(
GetTensorNameCC
),
PYFUNC
(
GetTensorInfoCC
),
PYFUNC
(
FeedTensorCC
),
...
...
Dragon/modules/python/py_tensor.h
View file @
3b99076
...
...
@@ -152,6 +152,55 @@ PyObject* TensorFromPyArrayCC(PyObject* self, PyObject* args) {
Py_RETURN_TRUE
;
}
PyObject
*
TensorFromTensorCC
(
PyObject
*
self
,
PyObject
*
args
)
{
char
*
dst_name
,
*
src_name
;
PyObject
*
py_dst_ctx
=
nullptr
,
*
py_src_ctx
=
nullptr
;
if
(
!
PyArg_ParseTuple
(
args
,
"ssOO"
,
&
dst_name
,
&
src_name
,
&
py_dst_ctx
,
&
py_src_ctx
))
{
PyErr_SetString
(
PyExc_ValueError
,
"Failed to create tensor from tensor.
\n
"
"Excepted the (dest, src) name and context."
);
return
nullptr
;
}
DeviceOption
dst_ctx
,
src_ctx
;
dst_ctx
.
ParseFromString
(
PyBytes_AsStringEx
(
py_dst_ctx
));
src_ctx
.
ParseFromString
(
PyBytes_AsStringEx
(
py_src_ctx
));
Tensor
*
srcT
=
ws
()
->
GetTensor
(
src_name
);
Tensor
*
dstT
=
ws
()
->
CreateTensor
(
dst_name
);
dstT
->
ReshapeLike
(
*
srcT
);
dstT
->
SetMeta
(
srcT
->
meta
());
if
(
dst_ctx
.
device_type
()
==
DeviceType
::
CUDA
)
{
if
(
src_ctx
.
device_type
()
==
DeviceType
::
CUDA
)
{
// CUDA <- CUDA
CUDAContext
::
Memcpy
<
CUDAContext
,
CUDAContext
>
(
srcT
->
nbytes
(),
dstT
->
raw_mutable_data
<
CUDAContext
>
(),
srcT
->
raw_data
<
CUDAContext
>
());
}
else
{
// CUDA <- CPU
CUDAContext
::
Memcpy
<
CUDAContext
,
CUDAContext
>
(
srcT
->
nbytes
(),
dstT
->
raw_mutable_data
<
CUDAContext
>
(),
srcT
->
raw_data
<
CPUContext
>
());
}
}
else
{
if
(
src_ctx
.
device_type
()
==
DeviceType
::
CUDA
)
{
// CPU <- CUDA
CUDAContext
::
Memcpy
<
CUDAContext
,
CUDAContext
>
(
srcT
->
nbytes
(),
dstT
->
raw_mutable_data
<
CPUContext
>
(),
srcT
->
raw_data
<
CUDAContext
>
());
}
else
{
// CPU <- CPU
CUDAContext
::
Memcpy
<
CUDAContext
,
CUDAContext
>
(
srcT
->
nbytes
(),
dstT
->
raw_mutable_data
<
CPUContext
>
(),
srcT
->
raw_data
<
CPUContext
>
());
}
}
Py_RETURN_TRUE
;
}
inline
PyObject
*
TensorToPyArrayCC
(
PyObject
*
self
,
PyObject
*
args
)
{
Tensor
*
tensor
=
ws
()
->
GetTensor
(
ParseName
(
self
,
args
));
CHECK_GT
(
tensor
->
count
(),
0
);
...
...
@@ -183,7 +232,8 @@ inline PyObject* TensorToPyArrayExCC(PyObject* self, PyObject* args) {
return
nullptr
;
}
auto
*
data
=
const_cast
<
void
*>
(
tensor
->
raw_data
<
CPUContext
>
());
PyObject
*
array
=
PyArray_SimpleNewFromData
(
tensor
->
ndim
(),
dims
.
data
(),
npy_type
,
data
);
PyObject
*
array
=
PyArray_SimpleNewFromData
(
tensor
->
ndim
(),
dims
.
data
(),
npy_type
,
data
);
Py_XINCREF
(
array
);
return
array
;
}
...
...
@@ -202,7 +252,8 @@ inline PyObject* ToCUDATensorCC(PyObject* self, PyObject* args) {
char
*
cname
;
int
device_id
;
if
(
!
PyArg_ParseTuple
(
args
,
"si"
,
&
cname
,
&
device_id
))
{
PyErr_SetString
(
PyExc_ValueError
,
"Excepted the tensor name and device id."
);
PyErr_SetString
(
PyExc_ValueError
,
"Excepted the tensor name and device id."
);
return
nullptr
;
}
Tensor
*
t
=
ws
()
->
GetTensor
(
cname
);
...
...
Dragon/modules/python/py_types.h
View file @
3b99076
...
...
@@ -23,7 +23,8 @@ inline const int TypeMetaToNPY(const TypeMeta& meta) {
{
TypeMeta
::
Id
<
int64_t
>
(),
NPY_INT64
},
{
TypeMeta
::
Id
<
double
>
(),
NPY_FLOAT64
},
{
TypeMeta
::
Id
<
float16
>
(),
NPY_FLOAT16
},
{
TypeMeta
::
Id
<
uint8_t
>
(),
NPY_UINT8
}
{
TypeMeta
::
Id
<
uint8_t
>
(),
NPY_UINT8
},
{
TypeMeta
::
Id
<
char
>
(),
NPY_INT8
}
};
return
m2npy_type_map
.
count
(
meta
.
id
())
?
m2npy_type_map
[
meta
.
id
()]
:
-
1
;
}
...
...
@@ -35,7 +36,8 @@ inline const TypeMeta& TypeNPYToMeta(int npy_type) {
{
NPY_INT64
,
TypeMeta
::
Make
<
int64_t
>
()
},
{
NPY_FLOAT64
,
TypeMeta
::
Make
<
double
>
()
},
{
NPY_FLOAT16
,
TypeMeta
::
Make
<
float16
>
()
},
{
NPY_UINT8
,
TypeMeta
::
Make
<
uint8_t
>
()
}
{
NPY_UINT8
,
TypeMeta
::
Make
<
uint8_t
>
()
},
{
NPY_INT8
,
TypeMeta
::
Make
<
char
>
()
},
};
static
TypeMeta
unknown_type
;
return
npy2m_type_map
.
count
(
npy_type
)
?
npy2m_type_map
[
npy_type
]
:
unknown_type
;
...
...
Dragon/python/dragon/core/tensor_utils.py
View file @
3b99076
...
...
@@ -24,6 +24,7 @@ from dragon.core.utils import MakeDeviceOption
__all__
=
[
'FromShape'
,
'SetShape'
,
'FromTensor'
,
'FromPyArray'
,
'SetPyArray'
,
'ToPyArray'
,
...
...
@@ -113,6 +114,40 @@ def SetShape(tensor, shape, dtype='float32'):
TensorFromShapeCC
(
_stringify_tensor
(
tensor
),
shape
,
dtype
)
def
FromTensor
(
src
,
src_ctx
=
None
,
name
=
None
,
ctx
=
None
):
"""Create a Tensor from a existing tensor.
Parameters
----------
src_ctx : str
The name of source tensor.
src_ctx : dragon_pb2.DeviceOption
The context of source tensor.
name : str
The optional tensor name for destination tensor.
ctx : dragon_pb2.DeviceOption
The context for destination tensor.
Returns
-------
Tensor
The tensor with the same data as source.
References
----------
The wrapper of ``TensorFromTensorCC``.
"""
if
name
is
None
:
tensor
=
Tensor
(
name
=
name
)
else
:
tensor
=
Tensor
(
_name
=
name
)
if
src_ctx
is
None
:
src_ctx
=
MakeDeviceOption
(
0
,
0
)
# CPUContext
if
ctx
is
None
:
ctx
=
MakeDeviceOption
(
0
,
0
)
# CPUContext
TensorFromTensorCC
(
_stringify_tensor
(
tensor
),
_stringify_tensor
(
src
),
_stringify_proto
(
ctx
),
_stringify_proto
(
src_ctx
))
return
tensor
def
FromPyArray
(
array
,
name
=
None
):
"""Create a Tensor from a existing Array.
...
...
@@ -120,7 +155,7 @@ def FromPyArray(array, name=None):
Parameters
----------
array : n
p.n
darray
array : ndarray
The array for creating the tensor.
name : str
The optional tensor name.
...
...
@@ -152,7 +187,7 @@ def SetPyArray(tensor, array):
----------
tensor : Tensor, str or None
The specific tensor to use.
array : n
umpy.n
darray
array : ndarray
The array for creating the tensor.
Returns
...
...
@@ -179,7 +214,7 @@ def ToPyArray(tensor):
Returns
-------
n
umpy.n
darray
ndarray
The array sharing the memory with original tensor.
References
...
...
@@ -202,7 +237,7 @@ def ToPyArrayEx(tensor):
Returns
-------
n
umpy.n
darray
ndarray
The array sharing the memory with original tensor.
References
...
...
Dragon/python/dragon/docs/contents/ops.rst
View file @
3b99076
...
...
@@ -149,7 +149,8 @@ List Brief
`OneHot`_ Generate the one-hot representation of inputs.
`Flatten`_ Flatten the input along the given axes.
`Reshape`_ Reshape the dimensions of input.
`ExpandDims`_ ExpandDims interface of NDArray.
`Squeeze`_ Remove the dimensions with size 1.
`ExpandDims`_ Expand the new dimension with size 1 to specific axis.
`Shape`_ Get the dynamic shape of a Tensor.
`Arange`_ Return a vector of elements by arange.
=============== ======================================================================
...
...
@@ -285,6 +286,7 @@ List Brief
.. _OneHot: operators/ndarray.html#dragon.operators.ndarray.OneHot
.. _Flatten: operators/ndarray.html#dragon.operators.ndarray.Flatten
.. _Reshape: operators/ndarray.html#dragon.operators.ndarray.Reshape
.. _Squeeze: operators/ndarray.html#dragon.operators.ndarray.Squeeze
.. _ExpandDims: operators/ndarray.html#dragon.operators.ndarray.ExpandDims
.. _Shape: operators/ndarray.html#dragon.operators.ndarray.Shape
.. _Arange: operators/ndarray.html#dragon.operators.ndarray.Arange
...
...
Dragon/python/dragon/io/data_reader.py
View file @
3b99076
...
...
@@ -97,7 +97,7 @@ class DataReader(Process):
self
.
_db
.
close
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_cur_idx
=
target_idx
self
.
_db
.
set
(
str
(
self
.
_cur_idx
)
.
zfill
(
self
.
_
db_
zfill
))
self
.
_db
.
set
(
str
(
self
.
_cur_idx
)
.
zfill
(
self
.
_zfill
))
def
reset
(
self
):
"""Reset the cursor and environment.
...
...
@@ -112,12 +112,12 @@ class DataReader(Process):
self
.
_cur_chunk_idx
=
0
self
.
_start_idx
=
int
(
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
])
self
.
_start_idx
=
int
(
self
.
_start_idx
*
self
.
_chunk_size
)
if
self
.
_start_idx
>=
self
.
_
db_size
:
self
.
next_chunk
()
if
self
.
_start_idx
>=
self
.
_
num_entries
:
self
.
next_chunk
()
self
.
_end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_end_idx
=
min
(
self
.
_
db_size
,
self
.
_end_idx
)
self
.
_end_idx
=
min
(
self
.
_
num_entries
,
self
.
_end_idx
)
else
:
self
.
_start_idx
=
0
self
.
_end_idx
=
self
.
_
db_size
self
.
_end_idx
=
self
.
_
num_entries
self
.
redirect
(
self
.
_start_idx
)
...
...
@@ -145,10 +145,10 @@ class DataReader(Process):
else
:
self
.
_start_idx
=
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
]
self
.
_start_idx
=
self
.
_start_idx
*
self
.
_chunk_size
if
self
.
_start_idx
>=
self
.
_
db_size
:
self
.
next_chunk
()
if
self
.
_start_idx
>=
self
.
_
num_entries
:
self
.
next_chunk
()
else
:
self
.
_end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_end_idx
=
min
(
self
.
_
db_size
,
self
.
_end_idx
)
self
.
_end_idx
=
min
(
self
.
_
num_entries
,
self
.
_end_idx
)
self
.
redirect
(
self
.
_start_idx
)
def
run
(
self
):
...
...
@@ -165,14 +165,14 @@ class DataReader(Process):
# init db
self
.
_db
=
LMDB
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_
db_
zfill
=
self
.
_db
.
zfill
()
self
.
_
db_size
=
self
.
_db
.
num_entries
()
self
.
_epoch_size
=
int
(
self
.
_
db_size
/
self
.
_num_parts
+
1
)
self
.
_zfill
=
self
.
_db
.
zfill
()
self
.
_
num_entries
=
self
.
_db
.
num_entries
()
self
.
_epoch_size
=
int
(
self
.
_
num_entries
/
self
.
_num_parts
+
1
)
if
self
.
_use_shuffle
:
if
self
.
_chunk_size
==
1
:
# each chunk has at most 1 record [For Fully Shuffle]
self
.
_num_shuffle_parts
=
int
(
self
.
_
db_size
/
self
.
_chunk_size
/
self
.
_num_parts
)
+
1
self
.
_num_shuffle_parts
=
int
(
self
.
_
num_entries
/
self
.
_chunk_size
/
self
.
_num_parts
)
+
1
else
:
if
self
.
_use_shuffle
and
self
.
_chunk_size
==
-
1
:
# search a optimal chunk size by chunks [For Chunk Shuffle]
...
...
@@ -182,12 +182,12 @@ class DataReader(Process):
self
.
_chunk_size
=
min_chunk_size
self
.
_num_shuffle_parts
=
int
(
math
.
ceil
(
self
.
_db
.
_total_size
*
1.1
/
(
self
.
_num_parts
*
self
.
_chunk_size
<<
20
)))
self
.
_chunk_size
=
int
(
self
.
_
db_size
/
self
.
_num_shuffle_parts
/
self
.
_num_parts
+
1
)
self
.
_chunk_size
=
int
(
self
.
_
num_entries
/
self
.
_num_shuffle_parts
/
self
.
_num_parts
+
1
)
else
:
# each chunk has at most K records [For Multiple Nodes]
# note that if ``shuffle`` and ``multiple_nodes`` are all ``False``,
# ``chunk_size`` and ``num_shuffle_parts`` are meaningless
self
.
_chunk_size
=
int
(
self
.
_
db_size
/
self
.
_num_parts
)
+
1
self
.
_chunk_size
=
int
(
self
.
_
num_entries
/
self
.
_num_parts
)
+
1
self
.
_num_shuffle_parts
=
1
self
.
_perm
=
np
.
arange
(
self
.
_num_shuffle_parts
)
...
...
Dragon/python/dragon/operators/ndarray.py
View file @
3b99076
...
...
@@ -727,11 +727,11 @@ def Reshape(inputs, shape, shape_like=None, **kwargs):
Examples
--------
>>> a = Tensor(shape=[1, 2, 3, 4]).Variable()
>>> print
Reshape(a, shape=[6, 4]
)
>>> print
(Reshape(a, shape=[6, 4])
)
>>> [6, 4]
>>> b = Reshape(a, shape=[-1, 4]) # shape will be [6, 4] in the backend
>>> print
b.shape
>>> print
(b.shape)
>>> [1, 4] # fake dimension at axis 0
"""
...
...
@@ -766,15 +766,58 @@ def Reshape(inputs, shape, shape_like=None, **kwargs):
return
output
def
ExpandDims
(
inputs
,
axis
=-
1
,
**
kwargs
):
"""ExpandDims interface of NDArray.
def
Squeeze
(
inputs
,
axis
=
None
,
**
kwargs
):
"""Remove the dimensions with size 1.
Set ``axis`` to remove the specific position.
Parameters
----------
inputs : Tensor
The input tensor.
axis : int or None
The specific axis to remove.
Returns
-------
Tensor
The output tensor.
Examples
--------
>>> a = Tensor(shape=[2, 1, 3, 4]).Variable()
>>> print(Squeeze(a).shape)
>>> print(Squeeze(a, axis=0).shape)
"""
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Squeeze'
,
**
arguments
)
if
inputs
.
shape
is
not
None
:
output_shape
=
[]
if
axis
:
axis
+=
(
0
if
axis
>=
0
else
len
(
inputs
.
shape
))
for
idx
,
dim
in
enumerate
(
inputs
.
shape
[:]):
if
dim
!=
1
or
\
(
axis
and
dim
==
1
and
idx
!=
axis
):
output_shape
.
append
(
dim
)
output
.
shape
=
output_shape
return
output
def
ExpandDims
(
inputs
,
axis
,
**
kwargs
):
"""Expand the new dimension with size 1 to specific axis.
Negative ``axis`` is equal to ``axis = axis + num_axes + 1``.
Parameters
----------
inputs : Tensor
The input tensor.
axis : int
The insert
position of new dimension. Default is ``-1`` (Push Back)
.
The insert
axis of new dimension
.
Returns
-------
...
...
@@ -784,9 +827,8 @@ def ExpandDims(inputs, axis=-1, **kwargs):
Examples
--------
>>> a = Tensor(shape=[1, 2, 3, 4]).Variable()
>>> print ExpandDims(a).shape
>>> print ExpandDims(a, axis=2).shape
>>> print(ExpandDims(a).shape)
>>> print(ExpandDims(a, axis=2).shape)
"""
CheckInputs
(
inputs
,
1
)
...
...
@@ -796,7 +838,8 @@ def ExpandDims(inputs, axis=-1, **kwargs):
if
inputs
.
shape
is
not
None
:
output
.
shape
=
inputs
.
shape
[:]
if
axis
==
-
1
or
axis
>=
len
(
inputs
.
shape
):
axis
+=
(
0
if
axis
>=
0
else
len
(
inputs
.
shape
)
+
1
)
if
axis
<
0
or
axis
>=
len
(
inputs
.
shape
):
output
.
shape
.
append
(
np
.
long
(
1
))
else
:
output
.
shape
.
insert
(
axis
,
np
.
long
(
1
))
...
...
Dragon/python/dragon/ops.py
View file @
3b99076
...
...
@@ -129,6 +129,7 @@ OneHot = ndarray.OneHot
Flatten
=
ndarray
.
Flatten
Reshape
=
ndarray
.
Reshape
ExpandDims
=
ndarray
.
ExpandDims
Squeeze
=
ndarray
.
Squeeze
Shape
=
ndarray
.
Shape
Arange
=
ndarray
.
Arange
...
...
Dragon/python/dragon/protos/dragon.proto
View file @
3b99076
syntax
=
"proto2"
;
package
dragon
;
message
TensorProto
{
repeated
int32
dims
=
1
;
enum
DataType
{
...
...
Dragon/python/dragon/protos/dragon_pb2.py
View file @
3b99076
...
...
@@ -18,14 +18,14 @@ _sym_db = _symbol_database.Default()
DESCRIPTOR
=
_descriptor
.
FileDescriptor
(
name
=
'dragon.proto'
,
package
=
''
,
serialized_pb
=
_b
(
'
\n\x0c\x64
ragon.proto
\
"\xf7\x01\n\x0b
TensorProto
\x12\x0c\n\x04\x64
ims
\x18\x01
\x03
(
\x05\x12
/
\n\t
data_type
\x18\x02
\x01
(
\x0e\x32\x15
.TensorProto.DataType:
\x05\x46
LOAT
\x12\x16\n\n
float_data
\x18\x03
\x03
(
\x02\x42\x02\x10\x01\x12\x16\n\n
int32_data
\x18\x04
\x03
(
\x05\x42\x02\x10\x01\x12\x11\n\t
byte_data
\x18\x05
\x01
(
\x0c\x12\x13\n\x0b
string_data
\x18\x06
\x03
(
\x0c\x12\x0c\n\x04
name
\x18\x07
\x01
(
\t\"
C
\n\x08\x44\x61
taType
\x12\t\n\x05\x46
LOAT
\x10\x01\x12\t\n\x05
INT32
\x10\x02\x12\x08\n\x04\x42
YTE
\x10\x03\x12\n\n\x06
STRING
\x10\x04\x12\x0b\n\x07\x46
LOAT16
\x10\x0c\"
,
\n\x0c
TensorProtos
\x12\x1c\n\x06
protos
\x18\x01
\x03
(
\x0b\x32\x0c
.TensorProto
\"\x80\x01\n\x08\x41
rgument
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\t\n\x01\x66\x18\x02
\x01
(
\x02\x12\t\n\x01
i
\x18\x03
\x01
(
\x05\x12\x0b\n\x03
i64
\x18\t
\x01
(
\x03\x12\t\n\x01
s
\x18\x04
\x01
(
\t\x12\t\n\x01\x62\x18\x08
\x01
(
\x08\x12\x0e\n\x06\x66
loats
\x18\x05
\x03
(
\x02\x12\x0c\n\x04
ints
\x18\x06
\x03
(
\x05\x12\x0f\n\x07
strings
\x18\x07
\x03
(
\t\"
s
\n\x0c\x44\x65
viceOption
\x12
%
\n\x0b\x64\x65
vice_type
\x18\x01
\x01
(
\x0e\x32\x0b
.DeviceType:
\x03\x43
PU
\x12\x14\n\t
device_id
\x18\x02
\x01
(
\x05
:
\x01\x30\x12\x16\n\x0b
random_seed
\x18\x03
\x01
(
\r
:
\x01\x33\x12\x0e\n\x06\x65
ngine
\x18\x04
\x01
(
\t\"\x86\x01\n\x0b
OperatorDef
\x12\r\n\x05
input
\x18\x01
\x03
(
\t\x12\x0e\n\x06
output
\x18\x02
\x03
(
\t\x12\x0c\n\x04
name
\x18\x03
\x01
(
\t\x12\x0c\n\x04
type
\x18\x04
\x01
(
\t\x12\x16\n\x03\x61
rg
\x18\x05
\x03
(
\x0b\x32\t
.Argument
\x12
$
\n\r
device_option
\x18\x06
\x01
(
\x0b\x32\r
.DeviceOption
\"
=
\n\x0e
GradientTarget
\x12\x0c\n\x04\x63
ost
\x18\x01
\x01
(
\t\x12\x0b\n\x03
wrt
\x18\x02
\x01
(
\t\x12\x10\n\x08\x65
xternal
\x18\x03
\x01
(
\t\"
R
\n\x0c
UpdateTarget
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\x0c\n\x04
type
\x18\x02
\x01
(
\t\x12\x0e\n\x06
tensor
\x18\x03
\x03
(
\t\x12\x16\n\x03\x61
rg
\x18\x04
\x03
(
\x0b\x32\t
.Argument
\"\x8d\x02\n\x0c
TensorFiller
\x12\x0e\n\x06
tensor
\x18\x01
\x01
(
\t\x12\x16\n\x04
type
\x18\x02
\x01
(
\t
:
\x08\x63
onstant
\x12\x10\n\x05
value
\x18\x03
\x01
(
\x02
:
\x01\x30\x12\x0e\n\x03
low
\x18\x04
\x01
(
\x02
:
\x01\x30\x12\x0f\n\x04
high
\x18\x05
\x01
(
\x02
:
\x01\x31\x12\x0f\n\x04
mean
\x18\x06
\x01
(
\x02
:
\x01\x30\x12\x0e\n\x03
std
\x18\x07
\x01
(
\x02
:
\x01\x31\x12\x10\n\x05
scale
\x18\x08
\x01
(
\x02
:
\x01\x33\x12\x39\n\r
variance_norm
\x18\t
\x01
(
\x0e\x32\x1a
.TensorFiller.VarianceNorm:
\x06\x46\x41
N_IN
\"
4
\n\x0c
VarianceNorm
\x12\n\n\x06\x46\x41
N_IN
\x10\x00\x12\x0b\n\x07\x46\x41
N_OUT
\x10\x01\x12\x0b\n\x07\x46\x41
N_AVG
\x10\x02\"\xd8\x01\n\x08
GraphDef
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\x18\n\x02
op
\x18\x02
\x03
(
\x0b\x32\x0c
.OperatorDef
\x12\x12\n\n
graph_type
\x18\x03
\x01
(
\t\x12
$
\n\r
device_option
\x18\x05
\x01
(
\x0b\x32\r
.DeviceOption
\x12\x16\n\x03\x61
rg
\x18\x06
\x03
(
\x0b\x32\t
.Argument
\x12\x0e\n\x06
target
\x18\x07
\x03
(
\t\x12
!
\n\x08
g_target
\x18\x08
\x03
(
\x0b\x32\x0f
.GradientTarget
\x12\x1f\n\x08
u_target
\x18\t
\x03
(
\x0b\x32\r
.UpdateTarget*+
\n\n
DeviceType
\x12\x07\n\x03\x43
PU
\x10\x00\x12\x08\n\x04\x43
UDA
\x10\x01\x12\n\n\x06
OPENCL
\x10\x02
'
)
package
=
'
dragon
'
,
serialized_pb
=
_b
(
'
\n\x0c\x64
ragon.proto
\
x12\x06\x64
ragon
\"\xfe\x01\n\x0b
TensorProto
\x12\x0c\n\x04\x64
ims
\x18\x01
\x03
(
\x05\x12\x36\n\t
data_type
\x18\x02
\x01
(
\x0e\x32\x1c
.dragon.TensorProto.DataType:
\x05\x46
LOAT
\x12\x16\n\n
float_data
\x18\x03
\x03
(
\x02\x42\x02\x10\x01\x12\x16\n\n
int32_data
\x18\x04
\x03
(
\x05\x42\x02\x10\x01\x12\x11\n\t
byte_data
\x18\x05
\x01
(
\x0c\x12\x13\n\x0b
string_data
\x18\x06
\x03
(
\x0c\x12\x0c\n\x04
name
\x18\x07
\x01
(
\t\"
C
\n\x08\x44\x61
taType
\x12\t\n\x05\x46
LOAT
\x10\x01\x12\t\n\x05
INT32
\x10\x02\x12\x08\n\x04\x42
YTE
\x10\x03\x12\n\n\x06
STRING
\x10\x04\x12\x0b\n\x07\x46
LOAT16
\x10\x0c\"
3
\n\x0c
TensorProtos
\x12
#
\n\x06
protos
\x18\x01
\x03
(
\x0b\x32\x13
.dragon.TensorProto
\"\x80\x01\n\x08\x41
rgument
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\t\n\x01\x66\x18\x02
\x01
(
\x02\x12\t\n\x01
i
\x18\x03
\x01
(
\x05\x12\x0b\n\x03
i64
\x18\t
\x01
(
\x03\x12\t\n\x01
s
\x18\x04
\x01
(
\t\x12\t\n\x01\x62\x18\x08
\x01
(
\x08\x12\x0e\n\x06\x66
loats
\x18\x05
\x03
(
\x02\x12\x0c\n\x04
ints
\x18\x06
\x03
(
\x05\x12\x0f\n\x07
strings
\x18\x07
\x03
(
\t\"
z
\n\x0c\x44\x65
viceOption
\x12
,
\n\x0b\x64\x65
vice_type
\x18\x01
\x01
(
\x0e\x32\x12
.dragon.DeviceType:
\x03\x43
PU
\x12\x14\n\t
device_id
\x18\x02
\x01
(
\x05
:
\x01\x30\x12\x16\n\x0b
random_seed
\x18\x03
\x01
(
\r
:
\x01\x33\x12\x0e\n\x06\x65
ngine
\x18\x04
\x01
(
\t\"\x94\x01\n\x0b
OperatorDef
\x12\r\n\x05
input
\x18\x01
\x03
(
\t\x12\x0e\n\x06
output
\x18\x02
\x03
(
\t\x12\x0c\n\x04
name
\x18\x03
\x01
(
\t\x12\x0c\n\x04
type
\x18\x04
\x01
(
\t\x12\x1d\n\x03\x61
rg
\x18\x05
\x03
(
\x0b\x32\x10
.dragon.Argument
\x12
+
\n\r
device_option
\x18\x06
\x01
(
\x0b\x32\x14
.dragon.DeviceOption
\"
=
\n\x0e
GradientTarget
\x12\x0c\n\x04\x63
ost
\x18\x01
\x01
(
\t\x12\x0b\n\x03
wrt
\x18\x02
\x01
(
\t\x12\x10\n\x08\x65
xternal
\x18\x03
\x01
(
\t\"
Y
\n\x0c
UpdateTarget
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\x0c\n\x04
type
\x18\x02
\x01
(
\t\x12\x0e\n\x06
tensor
\x18\x03
\x03
(
\t\x12\x1d\n\x03\x61
rg
\x18\x04
\x03
(
\x0b\x32\x10
.dragon.Argument
\"\x94\x02\n\x0c
TensorFiller
\x12\x0e\n\x06
tensor
\x18\x01
\x01
(
\t\x12\x16\n\x04
type
\x18\x02
\x01
(
\t
:
\x08\x63
onstant
\x12\x10\n\x05
value
\x18\x03
\x01
(
\x02
:
\x01\x30\x12\x0e\n\x03
low
\x18\x04
\x01
(
\x02
:
\x01\x30\x12\x0f\n\x04
high
\x18\x05
\x01
(
\x02
:
\x01\x31\x12\x0f\n\x04
mean
\x18\x06
\x01
(
\x02
:
\x01\x30\x12\x0e\n\x03
std
\x18\x07
\x01
(
\x02
:
\x01\x31\x12\x10\n\x05
scale
\x18\x08
\x01
(
\x02
:
\x01\x33\x12
@
\n\r
variance_norm
\x18\t
\x01
(
\x0e\x32
!.dragon.TensorFiller.VarianceNorm:
\x06\x46\x41
N_IN
\"
4
\n\x0c
VarianceNorm
\x12\n\n\x06\x46\x41
N_IN
\x10\x00\x12\x0b\n\x07\x46\x41
N_OUT
\x10\x01\x12\x0b\n\x07\x46\x41
N_AVG
\x10\x02\"\xfb\x01\n\x08
GraphDef
\x12\x0c\n\x04
name
\x18\x01
\x01
(
\t\x12\x1f\n\x02
op
\x18\x02
\x03
(
\x0b\x32\x13
.dragon.OperatorDef
\x12\x12\n\n
graph_type
\x18\x03
\x01
(
\t\x12
+
\n\r
device_option
\x18\x05
\x01
(
\x0b\x32\x14
.dragon.DeviceOption
\x12\x1d\n\x03\x61
rg
\x18\x06
\x03
(
\x0b\x32\x10
.dragon.Argument
\x12\x0e\n\x06
target
\x18\x07
\x03
(
\t\x12
(
\n\x08
g_target
\x18\x08
\x03
(
\x0b\x32\x16
.dragon.GradientTarget
\x12
&
\n\x08
u_target
\x18\t
\x03
(
\x0b\x32\x14
.dragon
.UpdateTarget*+
\n\n
DeviceType
\x12\x07\n\x03\x43
PU
\x10\x00\x12\x08\n\x04\x43
UDA
\x10\x01\x12\n\n\x06
OPENCL
\x10\x02
'
)
)
_sym_db
.
RegisterFileDescriptor
(
DESCRIPTOR
)
_DEVICETYPE
=
_descriptor
.
EnumDescriptor
(
name
=
'DeviceType'
,
full_name
=
'DeviceType'
,
full_name
=
'
dragon.
DeviceType'
,
filename
=
None
,
file
=
DESCRIPTOR
,
values
=
[
...
...
@@ -44,8 +44,8 @@ _DEVICETYPE = _descriptor.EnumDescriptor(
],
containing_type
=
None
,
options
=
None
,
serialized_start
=
1
335
,
serialized_end
=
1
378
,
serialized_start
=
1
427
,
serialized_end
=
1
470
,
)
_sym_db
.
RegisterEnumDescriptor
(
_DEVICETYPE
)
...
...
@@ -57,7 +57,7 @@ OPENCL = 2
_TENSORPROTO_DATATYPE
=
_descriptor
.
EnumDescriptor
(
name
=
'DataType'
,
full_name
=
'TensorProto.DataType'
,
full_name
=
'
dragon.
TensorProto.DataType'
,
filename
=
None
,
file
=
DESCRIPTOR
,
values
=
[
...
...
@@ -84,14 +84,14 @@ _TENSORPROTO_DATATYPE = _descriptor.EnumDescriptor(
],
containing_type
=
None
,
options
=
None
,
serialized_start
=
197
,
serialized_end
=
2
64
,
serialized_start
=
212
,
serialized_end
=
2
79
,
)
_sym_db
.
RegisterEnumDescriptor
(
_TENSORPROTO_DATATYPE
)
_TENSORFILLER_VARIANCENORM
=
_descriptor
.
EnumDescriptor
(
name
=
'VarianceNorm'
,
full_name
=
'TensorFiller.VarianceNorm'
,
full_name
=
'
dragon.
TensorFiller.VarianceNorm'
,
filename
=
None
,
file
=
DESCRIPTOR
,
values
=
[
...
...
@@ -110,63 +110,63 @@ _TENSORFILLER_VARIANCENORM = _descriptor.EnumDescriptor(
],
containing_type
=
None
,
options
=
None
,
serialized_start
=
1
062
,
serialized_end
=
11
14
,
serialized_start
=
1
119
,
serialized_end
=
11
71
,
)
_sym_db
.
RegisterEnumDescriptor
(
_TENSORFILLER_VARIANCENORM
)
_TENSORPROTO
=
_descriptor
.
Descriptor
(
name
=
'TensorProto'
,
full_name
=
'TensorProto'
,
full_name
=
'
dragon.
TensorProto'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'dims'
,
full_name
=
'TensorProto.dims'
,
index
=
0
,
name
=
'dims'
,
full_name
=
'
dragon.
TensorProto.dims'
,
index
=
0
,
number
=
1
,
type
=
5
,
cpp_type
=
1
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'data_type'
,
full_name
=
'TensorProto.data_type'
,
index
=
1
,
name
=
'data_type'
,
full_name
=
'
dragon.
TensorProto.data_type'
,
index
=
1
,
number
=
2
,
type
=
14
,
cpp_type
=
8
,
label
=
1
,
has_default_value
=
True
,
default_value
=
1
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'float_data'
,
full_name
=
'TensorProto.float_data'
,
index
=
2
,
name
=
'float_data'
,
full_name
=
'
dragon.
TensorProto.float_data'
,
index
=
2
,
number
=
3
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
_descriptor
.
_ParseOptions
(
descriptor_pb2
.
FieldOptions
(),
_b
(
'
\020\001
'
))),
_descriptor
.
FieldDescriptor
(
name
=
'int32_data'
,
full_name
=
'TensorProto.int32_data'
,
index
=
3
,
name
=
'int32_data'
,
full_name
=
'
dragon.
TensorProto.int32_data'
,
index
=
3
,
number
=
4
,
type
=
5
,
cpp_type
=
1
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
_descriptor
.
_ParseOptions
(
descriptor_pb2
.
FieldOptions
(),
_b
(
'
\020\001
'
))),
_descriptor
.
FieldDescriptor
(
name
=
'byte_data'
,
full_name
=
'TensorProto.byte_data'
,
index
=
4
,
name
=
'byte_data'
,
full_name
=
'
dragon.
TensorProto.byte_data'
,
index
=
4
,
number
=
5
,
type
=
12
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'string_data'
,
full_name
=
'TensorProto.string_data'
,
index
=
5
,
name
=
'string_data'
,
full_name
=
'
dragon.
TensorProto.string_data'
,
index
=
5
,
number
=
6
,
type
=
12
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'TensorProto.name'
,
index
=
6
,
name
=
'name'
,
full_name
=
'
dragon.
TensorProto.name'
,
index
=
6
,
number
=
7
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -184,20 +184,20 @@ _TENSORPROTO = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
17
,
serialized_end
=
2
64
,
serialized_start
=
25
,
serialized_end
=
2
79
,
)
_TENSORPROTOS
=
_descriptor
.
Descriptor
(
name
=
'TensorProtos'
,
full_name
=
'TensorProtos'
,
full_name
=
'
dragon.
TensorProtos'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'protos'
,
full_name
=
'TensorProtos.protos'
,
index
=
0
,
name
=
'protos'
,
full_name
=
'
dragon.
TensorProtos.protos'
,
index
=
0
,
number
=
1
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -214,76 +214,76 @@ _TENSORPROTOS = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
2
66
,
serialized_end
=
3
10
,
serialized_start
=
2
81
,
serialized_end
=
3
32
,
)
_ARGUMENT
=
_descriptor
.
Descriptor
(
name
=
'Argument'
,
full_name
=
'Argument'
,
full_name
=
'
dragon.
Argument'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'Argument.name'
,
index
=
0
,
name
=
'name'
,
full_name
=
'
dragon.
Argument.name'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'f'
,
full_name
=
'Argument.f'
,
index
=
1
,
name
=
'f'
,
full_name
=
'
dragon.
Argument.f'
,
index
=
1
,
number
=
2
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
False
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'i'
,
full_name
=
'Argument.i'
,
index
=
2
,
name
=
'i'
,
full_name
=
'
dragon.
Argument.i'
,
index
=
2
,
number
=
3
,
type
=
5
,
cpp_type
=
1
,
label
=
1
,
has_default_value
=
False
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'i64'
,
full_name
=
'Argument.i64'
,
index
=
3
,
name
=
'i64'
,
full_name
=
'
dragon.
Argument.i64'
,
index
=
3
,
number
=
9
,
type
=
3
,
cpp_type
=
2
,
label
=
1
,
has_default_value
=
False
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
's'
,
full_name
=
'Argument.s'
,
index
=
4
,
name
=
's'
,
full_name
=
'
dragon.
Argument.s'
,
index
=
4
,
number
=
4
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'b'
,
full_name
=
'Argument.b'
,
index
=
5
,
name
=
'b'
,
full_name
=
'
dragon.
Argument.b'
,
index
=
5
,
number
=
8
,
type
=
8
,
cpp_type
=
7
,
label
=
1
,
has_default_value
=
False
,
default_value
=
False
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'floats'
,
full_name
=
'Argument.floats'
,
index
=
6
,
name
=
'floats'
,
full_name
=
'
dragon.
Argument.floats'
,
index
=
6
,
number
=
5
,
type
=
2
,
cpp_type
=
6
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'ints'
,
full_name
=
'Argument.ints'
,
index
=
7
,
name
=
'ints'
,
full_name
=
'
dragon.
Argument.ints'
,
index
=
7
,
number
=
6
,
type
=
5
,
cpp_type
=
1
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'strings'
,
full_name
=
'Argument.strings'
,
index
=
8
,
name
=
'strings'
,
full_name
=
'
dragon.
Argument.strings'
,
index
=
8
,
number
=
7
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -300,41 +300,41 @@ _ARGUMENT = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
3
13
,
serialized_end
=
4
41
,
serialized_start
=
3
35
,
serialized_end
=
4
63
,
)
_DEVICEOPTION
=
_descriptor
.
Descriptor
(
name
=
'DeviceOption'
,
full_name
=
'DeviceOption'
,
full_name
=
'
dragon.
DeviceOption'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'device_type'
,
full_name
=
'DeviceOption.device_type'
,
index
=
0
,
name
=
'device_type'
,
full_name
=
'
dragon.
DeviceOption.device_type'
,
index
=
0
,
number
=
1
,
type
=
14
,
cpp_type
=
8
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'device_id'
,
full_name
=
'DeviceOption.device_id'
,
index
=
1
,
name
=
'device_id'
,
full_name
=
'
dragon.
DeviceOption.device_id'
,
index
=
1
,
number
=
2
,
type
=
5
,
cpp_type
=
1
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'random_seed'
,
full_name
=
'DeviceOption.random_seed'
,
index
=
2
,
name
=
'random_seed'
,
full_name
=
'
dragon.
DeviceOption.random_seed'
,
index
=
2
,
number
=
3
,
type
=
13
,
cpp_type
=
3
,
label
=
1
,
has_default_value
=
True
,
default_value
=
3
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'engine'
,
full_name
=
'DeviceOption.engine'
,
index
=
3
,
name
=
'engine'
,
full_name
=
'
dragon.
DeviceOption.engine'
,
index
=
3
,
number
=
4
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -351,55 +351,55 @@ _DEVICEOPTION = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
4
43
,
serialized_end
=
5
58
,
serialized_start
=
4
65
,
serialized_end
=
5
87
,
)
_OPERATORDEF
=
_descriptor
.
Descriptor
(
name
=
'OperatorDef'
,
full_name
=
'OperatorDef'
,
full_name
=
'
dragon.
OperatorDef'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'input'
,
full_name
=
'OperatorDef.input'
,
index
=
0
,
name
=
'input'
,
full_name
=
'
dragon.
OperatorDef.input'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'output'
,
full_name
=
'OperatorDef.output'
,
index
=
1
,
name
=
'output'
,
full_name
=
'
dragon.
OperatorDef.output'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'OperatorDef.name'
,
index
=
2
,
name
=
'name'
,
full_name
=
'
dragon.
OperatorDef.name'
,
index
=
2
,
number
=
3
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'type'
,
full_name
=
'OperatorDef.type'
,
index
=
3
,
name
=
'type'
,
full_name
=
'
dragon.
OperatorDef.type'
,
index
=
3
,
number
=
4
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'arg'
,
full_name
=
'OperatorDef.arg'
,
index
=
4
,
name
=
'arg'
,
full_name
=
'
dragon.
OperatorDef.arg'
,
index
=
4
,
number
=
5
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'device_option'
,
full_name
=
'OperatorDef.device_option'
,
index
=
5
,
name
=
'device_option'
,
full_name
=
'
dragon.
OperatorDef.device_option'
,
index
=
5
,
number
=
6
,
type
=
11
,
cpp_type
=
10
,
label
=
1
,
has_default_value
=
False
,
default_value
=
None
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -416,34 +416,34 @@ _OPERATORDEF = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
5
61
,
serialized_end
=
695
,
serialized_start
=
5
90
,
serialized_end
=
738
,
)
_GRADIENTTARGET
=
_descriptor
.
Descriptor
(
name
=
'GradientTarget'
,
full_name
=
'GradientTarget'
,
full_name
=
'
dragon.
GradientTarget'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'cost'
,
full_name
=
'GradientTarget.cost'
,
index
=
0
,
name
=
'cost'
,
full_name
=
'
dragon.
GradientTarget.cost'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'wrt'
,
full_name
=
'GradientTarget.wrt'
,
index
=
1
,
name
=
'wrt'
,
full_name
=
'
dragon.
GradientTarget.wrt'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'external'
,
full_name
=
'GradientTarget.external'
,
index
=
2
,
name
=
'external'
,
full_name
=
'
dragon.
GradientTarget.external'
,
index
=
2
,
number
=
3
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -460,41 +460,41 @@ _GRADIENTTARGET = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
697
,
serialized_end
=
758
,
serialized_start
=
740
,
serialized_end
=
801
,
)
_UPDATETARGET
=
_descriptor
.
Descriptor
(
name
=
'UpdateTarget'
,
full_name
=
'UpdateTarget'
,
full_name
=
'
dragon.
UpdateTarget'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'UpdateTarget.name'
,
index
=
0
,
name
=
'name'
,
full_name
=
'
dragon.
UpdateTarget.name'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'type'
,
full_name
=
'UpdateTarget.type'
,
index
=
1
,
name
=
'type'
,
full_name
=
'
dragon.
UpdateTarget.type'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'tensor'
,
full_name
=
'UpdateTarget.tensor'
,
index
=
2
,
name
=
'tensor'
,
full_name
=
'
dragon.
UpdateTarget.tensor'
,
index
=
2
,
number
=
3
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'arg'
,
full_name
=
'UpdateTarget.arg'
,
index
=
3
,
name
=
'arg'
,
full_name
=
'
dragon.
UpdateTarget.arg'
,
index
=
3
,
number
=
4
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -511,76 +511,76 @@ _UPDATETARGET = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
760
,
serialized_end
=
8
4
2
,
serialized_start
=
803
,
serialized_end
=
8
9
2
,
)
_TENSORFILLER
=
_descriptor
.
Descriptor
(
name
=
'TensorFiller'
,
full_name
=
'TensorFiller'
,
full_name
=
'
dragon.
TensorFiller'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'tensor'
,
full_name
=
'TensorFiller.tensor'
,
index
=
0
,
name
=
'tensor'
,
full_name
=
'
dragon.
TensorFiller.tensor'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'type'
,
full_name
=
'TensorFiller.type'
,
index
=
1
,
name
=
'type'
,
full_name
=
'
dragon.
TensorFiller.type'
,
index
=
1
,
number
=
2
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
True
,
default_value
=
_b
(
"constant"
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'value'
,
full_name
=
'TensorFiller.value'
,
index
=
2
,
name
=
'value'
,
full_name
=
'
dragon.
TensorFiller.value'
,
index
=
2
,
number
=
3
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'low'
,
full_name
=
'TensorFiller.low'
,
index
=
3
,
name
=
'low'
,
full_name
=
'
dragon.
TensorFiller.low'
,
index
=
3
,
number
=
4
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'high'
,
full_name
=
'TensorFiller.high'
,
index
=
4
,
name
=
'high'
,
full_name
=
'
dragon.
TensorFiller.high'
,
index
=
4
,
number
=
5
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
1
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'mean'
,
full_name
=
'TensorFiller.mean'
,
index
=
5
,
name
=
'mean'
,
full_name
=
'
dragon.
TensorFiller.mean'
,
index
=
5
,
number
=
6
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'std'
,
full_name
=
'TensorFiller.std'
,
index
=
6
,
name
=
'std'
,
full_name
=
'
dragon.
TensorFiller.std'
,
index
=
6
,
number
=
7
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
1
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'scale'
,
full_name
=
'TensorFiller.scale'
,
index
=
7
,
name
=
'scale'
,
full_name
=
'
dragon.
TensorFiller.scale'
,
index
=
7
,
number
=
8
,
type
=
2
,
cpp_type
=
6
,
label
=
1
,
has_default_value
=
True
,
default_value
=
3
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'variance_norm'
,
full_name
=
'TensorFiller.variance_norm'
,
index
=
8
,
name
=
'variance_norm'
,
full_name
=
'
dragon.
TensorFiller.variance_norm'
,
index
=
8
,
number
=
9
,
type
=
14
,
cpp_type
=
8
,
label
=
1
,
has_default_value
=
True
,
default_value
=
0
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -598,69 +598,69 @@ _TENSORFILLER = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
8
4
5
,
serialized_end
=
11
14
,
serialized_start
=
8
9
5
,
serialized_end
=
11
71
,
)
_GRAPHDEF
=
_descriptor
.
Descriptor
(
name
=
'GraphDef'
,
full_name
=
'GraphDef'
,
full_name
=
'
dragon.
GraphDef'
,
filename
=
None
,
file
=
DESCRIPTOR
,
containing_type
=
None
,
fields
=
[
_descriptor
.
FieldDescriptor
(
name
=
'name'
,
full_name
=
'GraphDef.name'
,
index
=
0
,
name
=
'name'
,
full_name
=
'
dragon.
GraphDef.name'
,
index
=
0
,
number
=
1
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'op'
,
full_name
=
'GraphDef.op'
,
index
=
1
,
name
=
'op'
,
full_name
=
'
dragon.
GraphDef.op'
,
index
=
1
,
number
=
2
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'graph_type'
,
full_name
=
'GraphDef.graph_type'
,
index
=
2
,
name
=
'graph_type'
,
full_name
=
'
dragon.
GraphDef.graph_type'
,
index
=
2
,
number
=
3
,
type
=
9
,
cpp_type
=
9
,
label
=
1
,
has_default_value
=
False
,
default_value
=
_b
(
""
)
.
decode
(
'utf-8'
),
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'device_option'
,
full_name
=
'GraphDef.device_option'
,
index
=
3
,
name
=
'device_option'
,
full_name
=
'
dragon.
GraphDef.device_option'
,
index
=
3
,
number
=
5
,
type
=
11
,
cpp_type
=
10
,
label
=
1
,
has_default_value
=
False
,
default_value
=
None
,
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'arg'
,
full_name
=
'GraphDef.arg'
,
index
=
4
,
name
=
'arg'
,
full_name
=
'
dragon.
GraphDef.arg'
,
index
=
4
,
number
=
6
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'target'
,
full_name
=
'GraphDef.target'
,
index
=
5
,
name
=
'target'
,
full_name
=
'
dragon.
GraphDef.target'
,
index
=
5
,
number
=
7
,
type
=
9
,
cpp_type
=
9
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'g_target'
,
full_name
=
'GraphDef.g_target'
,
index
=
6
,
name
=
'g_target'
,
full_name
=
'
dragon.
GraphDef.g_target'
,
index
=
6
,
number
=
8
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
is_extension
=
False
,
extension_scope
=
None
,
options
=
None
),
_descriptor
.
FieldDescriptor
(
name
=
'u_target'
,
full_name
=
'GraphDef.u_target'
,
index
=
7
,
name
=
'u_target'
,
full_name
=
'
dragon.
GraphDef.u_target'
,
index
=
7
,
number
=
9
,
type
=
11
,
cpp_type
=
10
,
label
=
3
,
has_default_value
=
False
,
default_value
=
[],
message_type
=
None
,
enum_type
=
None
,
containing_type
=
None
,
...
...
@@ -677,8 +677,8 @@ _GRAPHDEF = _descriptor.Descriptor(
extension_ranges
=
[],
oneofs
=
[
],
serialized_start
=
11
17
,
serialized_end
=
1
333
,
serialized_start
=
11
74
,
serialized_end
=
1
425
,
)
_TENSORPROTO
.
fields_by_name
[
'data_type'
]
.
enum_type
=
_TENSORPROTO_DATATYPE
...
...
@@ -709,63 +709,63 @@ DESCRIPTOR.enum_types_by_name['DeviceType'] = _DEVICETYPE
TensorProto
=
_reflection
.
GeneratedProtocolMessageType
(
'TensorProto'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_TENSORPROTO
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:TensorProto)
# @@protoc_insertion_point(class_scope:
dragon.
TensorProto)
))
_sym_db
.
RegisterMessage
(
TensorProto
)
TensorProtos
=
_reflection
.
GeneratedProtocolMessageType
(
'TensorProtos'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_TENSORPROTOS
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:TensorProtos)
# @@protoc_insertion_point(class_scope:
dragon.
TensorProtos)
))
_sym_db
.
RegisterMessage
(
TensorProtos
)
Argument
=
_reflection
.
GeneratedProtocolMessageType
(
'Argument'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_ARGUMENT
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:Argument)
# @@protoc_insertion_point(class_scope:
dragon.
Argument)
))
_sym_db
.
RegisterMessage
(
Argument
)
DeviceOption
=
_reflection
.
GeneratedProtocolMessageType
(
'DeviceOption'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_DEVICEOPTION
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:DeviceOption)
# @@protoc_insertion_point(class_scope:
dragon.
DeviceOption)
))
_sym_db
.
RegisterMessage
(
DeviceOption
)
OperatorDef
=
_reflection
.
GeneratedProtocolMessageType
(
'OperatorDef'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_OPERATORDEF
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:OperatorDef)
# @@protoc_insertion_point(class_scope:
dragon.
OperatorDef)
))
_sym_db
.
RegisterMessage
(
OperatorDef
)
GradientTarget
=
_reflection
.
GeneratedProtocolMessageType
(
'GradientTarget'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_GRADIENTTARGET
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:GradientTarget)
# @@protoc_insertion_point(class_scope:
dragon.
GradientTarget)
))
_sym_db
.
RegisterMessage
(
GradientTarget
)
UpdateTarget
=
_reflection
.
GeneratedProtocolMessageType
(
'UpdateTarget'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_UPDATETARGET
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:UpdateTarget)
# @@protoc_insertion_point(class_scope:
dragon.
UpdateTarget)
))
_sym_db
.
RegisterMessage
(
UpdateTarget
)
TensorFiller
=
_reflection
.
GeneratedProtocolMessageType
(
'TensorFiller'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_TENSORFILLER
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:TensorFiller)
# @@protoc_insertion_point(class_scope:
dragon.
TensorFiller)
))
_sym_db
.
RegisterMessage
(
TensorFiller
)
GraphDef
=
_reflection
.
GeneratedProtocolMessageType
(
'GraphDef'
,
(
_message
.
Message
,),
dict
(
DESCRIPTOR
=
_GRAPHDEF
,
__module__
=
'dragon_pb2'
# @@protoc_insertion_point(class_scope:GraphDef)
# @@protoc_insertion_point(class_scope:
dragon.
GraphDef)
))
_sym_db
.
RegisterMessage
(
GraphDef
)
...
...
Dragon/python/dragon/version.py
View file @
3b99076
...
...
@@ -14,7 +14,7 @@ from __future__ import division
from
__future__
import
print_function
version
=
'0.2.2'
full_version
=
'0.2.2.
9
'
full_version
=
'0.2.2.
10
'
release
=
False
if
not
release
:
...
...
Dragon/python/dragon/vm/torch/module.py
View file @
3b99076
...
...
@@ -115,8 +115,8 @@ class Module(object):
def
_load_state_dict_key_mismatch
(
self
,
full_name
,
name
,
is_missing
):
pass
def
load_state_dict
(
self
,
state_dict
,
strict
=
True
):
logger
.
info
(
'Load the state dict from numpy arrays
.'
)
def
load_state_dict
(
self
,
state_dict
,
strict
=
True
,
verbose
=
True
):
if
verbose
:
logger
.
info
(
'Load the state dict
.'
)
def
submodule_key_mismatch
(
full_name
,
is_missing
):
module
=
self
names
=
full_name
.
split
(
"."
)
...
...
@@ -131,9 +131,6 @@ class Module(object):
own_state
=
self
.
state_dict
()
for
name
,
param
in
state_dict
.
items
():
if
name
in
own_state
:
if
not
isinstance
(
param
,
np
.
ndarray
):
raise
ValueError
(
'PyTorch@Dragon can only load params '
'that saved as numpy array.'
)
state_shape
=
own_state
[
name
]
.
shape
param_shape
=
param
.
shape
if
state_shape
!=
param_shape
:
...
...
@@ -145,8 +142,15 @@ class Module(object):
raise
ValueError
(
'DType of state({}) is {},
\n
'
'While load from a PyArray of {}.'
.
format
(
name
,
own_state
[
name
]
.
dtype
,
str
(
param
.
dtype
)))
dg
.
workspace
.
FeedTensor
(
own_state
[
name
]
.
name
,
param
)
logger
.
info
(
'* Tensor({}) loaded, Size: ({})'
.
format
(
name
,
if
isinstance
(
param
,
Tensor
):
own_state
[
name
]
.
copy_
(
param
)
elif
isinstance
(
param
,
np
.
ndarray
):
dg
.
tensor_utils
.
SetPyArray
(
own_state
[
name
],
param
)
else
:
raise
ValueError
(
'Excepted the type of source state is either '
'torch.Tensor or numpy.ndarray, got {}.'
.
format
(
type
(
param
)))
if
verbose
:
logger
.
info
(
'* Tensor({}) loaded, Size: ({})'
.
format
(
name
,
', '
.
join
([
str
(
d
)
for
d
in
param_shape
])))
if
strict
:
missing
=
set
(
own_state
.
keys
())
-
set
(
state_dict
.
keys
())
...
...
Dragon/python/dragon/vm/torch/nn/__init__.py
View file @
3b99076
...
...
@@ -18,7 +18,7 @@ from dragon.vm.torch.module import Module
from
dragon.vm.torch.tensor
import
Parameter
from
.modules.conv
import
Conv2d
,
ConvTranspose2d
from
.modules.pooling
import
MaxPool2d
,
AvgPool2d
from
.modules.activation
import
ReLU
,
Sigmoid
,
Softmax
from
.modules.activation
import
ReLU
,
LeakyReLU
,
Sigmoid
,
Softmax
from
.modules.linear
import
Linear
from
.modules.loss
import
CrossEntropyLoss
from
.modules.container
import
Container
,
Sequential
,
ModuleList
...
...
Dragon/python/dragon/vm/torch/nn/modules/activation.py
View file @
3b99076
...
...
@@ -35,6 +35,26 @@ class ReLU(Module):
return
self
.
run
(
inputs
,
outputs
)
class
LeakyReLU
(
Module
):
def
__init__
(
self
,
negative_slope
=
0.01
,
inplace
=
False
):
super
(
LeakyReLU
,
self
)
.
__init__
()
self
.
_negative_slope
=
negative_slope
self
.
_inplace
=
inplace
self
.
register_op
()
def
register_op
(
self
):
self
.
op_meta
=
{
'op_type'
:
'Relu'
,
'n_inputs'
:
1
,
'n_outputs'
:
1
,
'arguments'
:
{
'slope'
:
self
.
_negative_slope
}
}
def
forward
(
self
,
x
):
inputs
=
[
x
];
self
.
unify_devices
(
inputs
)
outputs
=
[
x
if
self
.
_inplace
else
self
.
register_output
(
x
.
dtype
)]
return
self
.
run
(
inputs
,
outputs
)
class
Sigmoid
(
Module
):
def
__init__
(
self
,
inplace
=
False
):
super
(
Sigmoid
,
self
)
.
__init__
()
...
...
Dragon/python/dragon/vm/torch/ops/__init__.py
View file @
3b99076
...
...
@@ -19,7 +19,9 @@ from .arithmetic import (
)
from
.ndarray
import
(
sum
,
mean
,
argmin
,
argmax
,
max
,
topk
,
cat
,
gather
squeeze
,
unsqueeze
,
sum
,
mean
,
argmin
,
argmax
,
max
,
topk
,
cat
,
gather
,
)
from
.vision
import
(
...
...
Dragon/python/dragon/vm/torch/ops/builtin.py
View file @
3b99076
...
...
@@ -13,6 +13,8 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
dragon.vm.torch.constants
import
CTX_TO_DEVICE_OPTION
from
dragon.core.tensor_utils
import
FromTensor
from
dragon.vm.torch.tensor
import
Tensor
,
Size
from
dragon.vm.torch.execute_engine
import
RunOperator
...
...
@@ -20,9 +22,11 @@ from dragon.vm.torch.ops.factory import get_module
from
dragon.vm.torch.autograd.grad_mode
import
no_grad
from
dragon.vm.torch.ops.primitive
import
MakeContext
from
dragon.vm.torch.ops.arithmetic
import
_fundamental
,
_rfundamental
from
dragon.vm.torch.ops.control_flow
import
_copy
from
dragon.vm.torch.ops.ndarray
import
\
(
reshape
,
_permute
,
_repeat
,
_fill
,
_reduce
,
_arg_reduce
,
_crop
)
from
dragon.vm.torch.ops.ndarray
import
(
reshape
,
squeeze
,
unsqueeze
,
_permute
,
_repeat
,
_crop
,
_fill
,
_reduce
,
_arg_reduce
,
)
from
dragon.vm.torch.ops.modules.dtype
import
AsType
...
...
@@ -33,13 +37,15 @@ from dragon.vm.torch.ops.modules.dtype import AsType
##############################################
def
copy_
(
self
,
src
):
def
copy_
(
self
,
src
,
non_blocking
=
False
):
"""Copy the elements from ``src`` into this tensor and return ``self``.
Parameters
----------
src : vm.torch.Tensor
The source tensor.
non_blocking : boolean
Whether to copy asynchronously between CPU and GPU.
Returns
-------
...
...
@@ -47,7 +53,10 @@ def copy_(self, src):
The ``self`` tensor.
"""
return
_copy
(
self
,
src
)
FromTensor
(
src
,
CTX_TO_DEVICE_OPTION
[
tuple
(
src
.
_ctx
)],
self
.
name
,
CTX_TO_DEVICE_OPTION
[
tuple
(
self
.
_ctx
)])
return
self
Tensor
.
copy_
=
copy_
...
...
@@ -308,6 +317,75 @@ Tensor.__rtruediv__ = rdiv
##############################################
def
_squeeze
(
self
,
dim
=
None
):
"""Returns a tensor with all the dimensions of input of size 1 removed.
Parameters
----------
dim : int
The optional dim to remove.
Returns
-------
vm.torch.Tensor
The new tensor.
"""
return
squeeze
(
self
,
dim
=
dim
)
def
_squeeze_
(
self
,
dim
=
None
):
"""Inplace of ``Tensor.squeeze()``
Parameters
----------
dim : int
The optional dim to remove.
Returns
-------
vm.torch.Tensor
The self.
"""
return
squeeze
(
self
,
dim
=
dim
,
out
=
self
)
def
_unsqueeze
(
self
,
dim
):
"""Returns a tensor with a dimension of size 1 inserted at the specified position.
Parameters
----------
dim : int
The dim to insert.
Returns
-------
vm.torch.Tensor
The new tensor.
"""
return
unsqueeze
(
self
,
dim
=
dim
)
def
_unsqueeze_
(
self
,
dim
=
None
):
"""Inplace of ``Tensor.unsqueeze()``
Parameters
----------
dim : int
The optional dim to remove.
Returns
-------
vm.torch.Tensor
The self.
"""
return
unsqueeze
(
self
,
dim
=
dim
,
out
=
self
)
def
view
(
self
,
*
args
):
if
self
.
_static_shape
:
raise
RuntimeError
(
'Can not view a leaf variable, it owns the static sizes.'
)
...
...
@@ -353,6 +431,10 @@ def min(self, dim=None, keepdim=False):
return
_arg_reduce
(
self
,
'MIN'
,
dim
,
keepdim
)
Tensor
.
squeeze
=
_squeeze
Tensor
.
squeeze_
=
_squeeze_
Tensor
.
unsqueeze
=
_unsqueeze
Tensor
.
unsqueeze_
=
_unsqueeze_
Tensor
.
view
=
view
Tensor
.
view_as
=
view_as
Tensor
.
permute
=
permute
...
...
@@ -412,6 +494,8 @@ Tensor.double = lambda self: _type_to(self, dtype='float64', inplace=False)
Tensor
.
double_
=
lambda
self
:
_type_to
(
self
,
dtype
=
'float64'
,
inplace
=
True
)
Tensor
.
byte
=
lambda
self
:
_type_to
(
self
,
dtype
=
'uint8'
,
inplace
=
False
)
Tensor
.
byte_
=
lambda
self
:
_type_to
(
self
,
dtype
=
'uint8'
,
inplace
=
True
)
Tensor
.
char
=
lambda
self
:
_type_to
(
self
,
dtype
=
'int8'
,
inplace
=
False
)
Tensor
.
char_
=
lambda
self
:
_type_to
(
self
,
dtype
=
'int8'
,
inplace
=
True
)
Tensor
.
int
=
lambda
self
:
_type_to
(
self
,
dtype
=
'int32'
,
inplace
=
False
)
Tensor
.
int_
=
lambda
self
:
_type_to
(
self
,
dtype
=
'int32'
,
inplace
=
True
)
Tensor
.
long
=
lambda
self
:
_type_to
(
self
,
dtype
=
'int64'
,
inplace
=
False
)
...
...
Dragon/python/dragon/vm/torch/ops/control_flow.py
View file @
3b99076
...
...
@@ -10,13 +10,4 @@
# ------------------------------------------------------------
from
dragon.vm.torch.ops.primitive
import
MakeContext
from
dragon.vm.torch.ops.factory
import
get_module
from
dragon.vm.torch.ops.modules.control_flow
import
Copy
def
_copy
(
dst
,
src
):
if
id
(
dst
)
==
id
(
src
):
return
dst
ctx
=
MakeContext
(
inputs
=
[
dst
])
key
=
'torch/ops/copy/{}:{}'
.
format
(
ctx
[
0
]
.
lower
(),
ctx
[
1
])
module
=
get_module
(
Copy
,
key
,
ctx
)
return
module
.
forward
(
dst
,
src
)
\ No newline at end of file
from
dragon.vm.torch.ops.factory
import
get_module
\ No newline at end of file
Dragon/python/dragon/vm/torch/ops/modules/shape.py
View file @
3b99076
...
...
@@ -14,6 +14,7 @@ from __future__ import division
from
__future__
import
print_function
from
dragon.vm.torch.ops.modules.base
import
BaseModule
from
dragon.vm.torch.tensor
import
ReferneceTensor
class
Fill
(
BaseModule
):
...
...
@@ -69,13 +70,61 @@ class Reshape(BaseModule):
def
forward
(
self
,
x
,
shape
):
inputs
=
[
x
];
self
.
unify_devices
(
inputs
)
outputs
=
[
self
.
register_output
(
x
.
dtype
)]
outputs
=
[
ReferneceTensor
(
x
)]
if
shape
is
not
None
:
for
ix
,
d
in
enumerate
(
shape
):
self
.
set_argument_i
(
self
.
shape
[
ix
],
d
)
return
self
.
run
(
inputs
,
outputs
)
class
Squeeze
(
BaseModule
):
def
__init__
(
self
,
key
,
ctx
,
**
kwargs
):
super
(
Squeeze
,
self
)
.
__init__
(
key
,
ctx
,
**
kwargs
)
self
.
dim
=
kwargs
.
get
(
'dim'
,
None
)
self
.
register_arguments
()
self
.
register_op
()
def
register_arguments
(
self
):
"""No Arguments for squeeze op."""
pass
def
register_op
(
self
):
self
.
op_meta
=
{
'op_type'
:
'Squeeze'
,
'n_inputs'
:
1
,
'n_outputs'
:
1
,
'arguments'
:
{
'axis'
:
self
.
dim
}
}
def
forward
(
self
,
x
,
out
=
None
):
inputs
=
[
x
];
self
.
unify_devices
(
inputs
)
outputs
=
[
out
]
if
out
else
[
ReferneceTensor
(
x
)]
return
self
.
run
(
inputs
,
outputs
)
class
UnSqueeze
(
BaseModule
):
def
__init__
(
self
,
key
,
ctx
,
**
kwargs
):
super
(
UnSqueeze
,
self
)
.
__init__
(
key
,
ctx
,
**
kwargs
)
self
.
dim
=
kwargs
.
get
(
'dim'
,
None
)
self
.
register_arguments
()
self
.
register_op
()
def
register_arguments
(
self
):
"""No Arguments for squeeze op."""
pass
def
register_op
(
self
):
self
.
op_meta
=
{
'op_type'
:
'ExpandDims'
,
'n_inputs'
:
1
,
'n_outputs'
:
1
,
'arguments'
:
{
'axis'
:
self
.
dim
}
}
def
forward
(
self
,
x
,
out
=
None
):
inputs
=
[
x
];
self
.
unify_devices
(
inputs
)
outputs
=
[
out
]
if
out
else
[
ReferneceTensor
(
x
)]
return
self
.
run
(
inputs
,
outputs
)
class
Permute
(
BaseModule
):
def
__init__
(
self
,
key
,
ctx
,
**
kwargs
):
super
(
Permute
,
self
)
.
__init__
(
key
,
ctx
,
**
kwargs
)
...
...
Dragon/python/dragon/vm/torch/ops/ndarray.py
View file @
3b99076
...
...
@@ -15,7 +15,8 @@ from __future__ import print_function
from
dragon.vm.torch.ops.primitive
import
MakeContext
,
CanonicalAxis
from
dragon.vm.torch.ops.factory
import
get_module
from
dragon.vm.torch.ops.modules.shape
import
Reshape
,
Fill
,
Permute
,
Repeat
from
dragon.vm.torch.ops.modules.shape
import
\
Reshape
,
Squeeze
,
UnSqueeze
,
Fill
,
Permute
,
Repeat
from
dragon.vm.torch.ops.modules.reduce
import
Reduce
,
ArgReduce
from
dragon.vm.torch.ops.modules.crop
import
Crop
from
dragon.vm.torch.ops.modules.axis
import
Concat
,
Gather
...
...
@@ -29,6 +30,22 @@ def reshape(input, shape, shape_like=None):
return
module
.
forward
(
input
,
shape
)
def
squeeze
(
input
,
dim
=
None
,
out
=
None
):
ctx
=
MakeContext
(
inputs
=
[
input
])
key
=
'torch/ops/squeeze/{}:{}/dim:{}'
.
format
(
ctx
[
0
]
.
lower
(),
ctx
[
1
],
dim
if
dim
else
'None'
)
module
=
get_module
(
Squeeze
,
key
,
ctx
,
dim
=
dim
)
return
module
.
forward
(
input
,
out
=
out
)
def
unsqueeze
(
input
,
dim
,
out
=
None
):
ctx
=
MakeContext
(
inputs
=
[
input
])
key
=
'torch/ops/unsqueeze/{}:{}/dim:{}'
.
format
(
ctx
[
0
]
.
lower
(),
ctx
[
1
],
dim
if
dim
else
'None'
)
module
=
get_module
(
UnSqueeze
,
key
,
ctx
,
dim
=
dim
)
return
module
.
forward
(
input
,
out
=
out
)
def
_permute
(
input
,
perms
=
None
):
ctx
=
MakeContext
(
inputs
=
[
input
]);
len_perms
=
len
(
perms
)
if
perms
else
0
key
=
'torch/ops/permute/{}:{}/n_dims:#{}'
.
format
(
ctx
[
0
]
.
lower
(),
ctx
[
1
],
len_perms
)
...
...
Dragon/python/dragon/vm/torch/serialization.py
View file @
3b99076
...
...
@@ -51,7 +51,8 @@ def _with_file_like(f, mode, body):
(
sys
.
version_info
[
0
]
==
3
and
isinstance
(
f
,
pathlib
.
Path
)):
new_fd
=
True
dir
=
os
.
path
.
dirname
(
f
)
if
not
os
.
path
.
exists
(
dir
):
os
.
makedirs
(
dir
)
# Bug fix: empty directory, i.e., under the work directory
if
dir
!=
''
and
not
os
.
path
.
exists
(
dir
):
os
.
makedirs
(
dir
)
f
=
open
(
f
,
mode
)
try
:
return
body
(
f
)
...
...
Dragon/python/dragon/vm/torch/tensor.py
View file @
3b99076
...
...
@@ -13,6 +13,8 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
copy
import
numpy
as
np
import
dragon
as
dg
import
dragon.core.tensor_utils
as
tensor_utils
...
...
@@ -23,9 +25,11 @@ from dragon.vm.torch.constants import CTX_TO_DEVICE_OPTION
from
.c_apis
import
*
__all__
=
[
'Tensor'
,
'Parameter'
,
__all__
=
[
'Tensor'
,
'Parameter'
,
'FloatTensor'
,
'DoubleTensor'
,
'IntTensor'
,
'LongTensor'
,
'ByteTensor'
,
'IntTensor'
,
'LongTensor'
,
'ByteTensor'
,
'CharTensor'
,
]
...
...
@@ -48,6 +52,9 @@ class Tensor(object):
self
.
_requires_grad
=
kwargs
.
get
(
'requires_grad'
,
False
)
self
.
_dg_tensor
=
kwargs
.
get
(
'dg_tensor'
,
None
)
self
.
_own_storage
=
kwargs
.
get
(
'own_storage'
,
True
)
# Hold it to lock shared objects(i.e., tensor with same storage)
self
.
_ref_objects
=
[]
# Owned by the leaf variables(i.e. Can not be Reshaped)
self
.
_static_shape
=
None
# Owned by the grad required variables
...
...
@@ -541,6 +548,71 @@ class Tensor(object):
# #
##############################################
def
squeeze
(
self
,
dim
=
None
):
"""Returns a tensor with all the dimensions of input of size 1 removed.
Parameters
----------
dim : int
The optional dim to remove.
Returns
-------
vm.torch.Tensor
The new tensor.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin._squeeze'
)
def
squeeze_
(
self
,
dim
=
None
):
"""Inplace of ``Tensor.squeeze()``
Parameters
----------
dim : int
The optional dim to remove.
Returns
-------
vm.torch.Tensor
The self.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin._squeeze_'
)
def
unsqueeze
(
self
,
dim
):
"""Returns a tensor with a dimension of size 1 inserted at the specified position.
Parameters
----------
dim : int
The dim to insert.
Returns
-------
vm.torch.Tensor
The new tensor.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin._unsqueeze'
)
def
unsqueeze_
(
self
,
dim
):
"""Inplace of ``Tensor.unsqueeze()``
Parameters
----------
dim : int
The dim to insert.
Returns
-------
vm.torch.Tensor
The self.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin._unsqueeze_'
)
def
view
(
self
,
*
args
):
"""Return a new tensor with the same data but a different size.
...
...
@@ -605,13 +677,15 @@ class Tensor(object):
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin.repeat'
)
def
copy_
(
self
,
src
):
def
copy_
(
self
,
src
,
non_blocking
=
False
):
"""Copy the elements from ``src`` into this tensor and return ``self``.
Parameters
----------
src : vm.torch.Tensor
The source tensor.
non_blocking : boolean
Whether to copy asynchronously between CPU and GPU.
Returns
-------
...
...
@@ -1034,6 +1108,28 @@ class Tensor(object):
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin.byte_'
)
def
char
(
self
):
"""Return a ``int8`` tensor with elements of ``self``.
Returns
-------
vm.torch.Tensor
The byte tensor.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin.char'
)
def
char_
(
self
):
"""Inplace of ``Tensor.char()``.
Returns
-------
vm.torch.Tensor
The byte tensor.
"""
raise
NotImplementedError
(
'Refer torch.ops.builtin.char_'
)
##############################################
# #
# AUTO-GRAD #
...
...
@@ -1126,6 +1222,11 @@ def ByteTensor(*args, **kwargs):
return
Tensor
(
*
args
,
**
kwargs
)
def
CharTensor
(
*
args
,
**
kwargs
):
kwargs
[
'dtype'
]
=
'int8'
return
Tensor
(
*
args
,
**
kwargs
)
_DTYPE_TO_TENSOR
=
{
'float16'
:
HalfTensor
,
'float32'
:
FloatTensor
,
...
...
@@ -1133,6 +1234,7 @@ _DTYPE_TO_TENSOR = {
'int32'
:
IntTensor
,
'int64'
:
LongTensor
,
'uint8'
:
ByteTensor
,
'int8'
:
CharTensor
,
}
...
...
@@ -1158,6 +1260,23 @@ def RuntimeTensor(name, dtype='float32', ctx=None):
return
constructor
(
dg_tensor
=
name
,
ctx
=
ctx
)
def
ReferneceTensor
(
src
):
"""Create a reference from source tensor.
Commonly used to hold the same storage but takes different sizes,
i.e., view, squeeze, and unsqueeze.
"""
constructor
=
_DTYPE_TO_TENSOR
[
src
.
_dtype
]
ref
=
constructor
(
dg_tensor
=
src
.
name
,
ctx
=
src
.
_ctx
)
name
=
'{}/id:{}'
.
format
(
src
.
name
.
replace
(
'[TPool]'
,
'[Ref]'
),
id
(
ref
))
dg
.
workspace
.
CreateTensor
(
name
)
ref
.
_dg_tensor
,
ref
.
_own_storage
=
name
,
False
ref
.
_ref_objects
.
append
(
src
)
return
ref
##############################################
# #
# Tensor-Extension #
...
...
Dragon/python/dragon/vm/torch/tensor_uitls.py
View file @
3b99076
...
...
@@ -23,7 +23,7 @@ def from_numpy(data):
Parameters
----------
data : n
umpy.n
darray
data : ndarray
The nd-array with various data type.
Return
...
...
@@ -113,4 +113,5 @@ __NUMPY_TYPE_TO_TORCH = {
'int32'
:
'IntTensor'
,
'int64'
:
'LongTensor'
,
'uint8'
:
'ByteTensor'
,
'int8'
:
'CharTensor'
,
}
\ No newline at end of file
Dragon/python/dragon/vm/torch/utils/data/io/data_reader.py
View file @
3b99076
...
...
@@ -97,7 +97,7 @@ class DataReader(Process):
self
.
_db
.
close
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_cur_idx
=
target_idx
self
.
_db
.
set
(
str
(
self
.
_cur_idx
)
.
zfill
(
self
.
_
db_
zfill
))
self
.
_db
.
set
(
str
(
self
.
_cur_idx
)
.
zfill
(
self
.
_zfill
))
def
reset
(
self
):
"""Reset the cursor and environment.
...
...
@@ -112,12 +112,12 @@ class DataReader(Process):
self
.
_cur_chunk_idx
=
0
self
.
_start_idx
=
int
(
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
])
self
.
_start_idx
=
int
(
self
.
_start_idx
*
self
.
_chunk_size
)
if
self
.
_start_idx
>=
self
.
_
db_size
:
self
.
next_chunk
()
if
self
.
_start_idx
>=
self
.
_
num_entries
:
self
.
next_chunk
()
self
.
_end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_end_idx
=
min
(
self
.
_
db_size
,
self
.
_end_idx
)
self
.
_end_idx
=
min
(
self
.
_
num_entries
,
self
.
_end_idx
)
else
:
self
.
_start_idx
=
0
self
.
_end_idx
=
self
.
_
db_size
self
.
_end_idx
=
self
.
_
num_entries
self
.
redirect
(
self
.
_start_idx
)
...
...
@@ -145,10 +145,10 @@ class DataReader(Process):
else
:
self
.
_start_idx
=
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
]
self
.
_start_idx
=
self
.
_start_idx
*
self
.
_chunk_size
if
self
.
_start_idx
>=
self
.
_
db_size
:
self
.
next_chunk
()
if
self
.
_start_idx
>=
self
.
_
num_entries
:
self
.
next_chunk
()
else
:
self
.
_end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_end_idx
=
min
(
self
.
_
db_size
,
self
.
_end_idx
)
self
.
_end_idx
=
min
(
self
.
_
num_entries
,
self
.
_end_idx
)
self
.
redirect
(
self
.
_start_idx
)
def
run
(
self
):
...
...
@@ -165,14 +165,14 @@ class DataReader(Process):
# init db
self
.
_db
=
LMDB
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_
db_size
=
int
(
self
.
_db
.
get
(
'size'
)
)
self
.
_
db_zfill
=
int
(
self
.
_db
.
get
(
'zfill'
)
)
self
.
_epoch_size
=
int
(
self
.
_
db_size
/
self
.
_num_parts
+
1
)
self
.
_
zfill
=
self
.
_db
.
zfill
(
)
self
.
_
num_entries
=
self
.
_db
.
num_entries
(
)
self
.
_epoch_size
=
int
(
self
.
_
num_entries
/
self
.
_num_parts
+
1
)
if
self
.
_use_shuffle
:
if
self
.
_chunk_size
==
1
:
# each chunk has at most 1 record [For Fully Shuffle]
self
.
_num_shuffle_parts
=
int
(
self
.
_
db_size
/
self
.
_chunk_size
/
self
.
_num_parts
)
+
1
self
.
_num_shuffle_parts
=
int
(
self
.
_
num_entries
/
self
.
_chunk_size
/
self
.
_num_parts
)
+
1
else
:
if
self
.
_use_shuffle
and
self
.
_chunk_size
==
-
1
:
# search a optimal chunk size by chunks [For Chunk Shuffle]
...
...
@@ -182,12 +182,12 @@ class DataReader(Process):
self
.
_chunk_size
=
min_chunk_size
self
.
_num_shuffle_parts
=
int
(
math
.
ceil
(
self
.
_db
.
_total_size
*
1.1
/
(
self
.
_num_parts
*
self
.
_chunk_size
<<
20
)))
self
.
_chunk_size
=
int
(
self
.
_
db_size
/
self
.
_num_shuffle_parts
/
self
.
_num_parts
+
1
)
self
.
_chunk_size
=
int
(
self
.
_
num_entries
/
self
.
_num_shuffle_parts
/
self
.
_num_parts
+
1
)
else
:
# each chunk has at most K records [For Multiple Nodes]
# note that if ``shuffle`` and ``multiple_nodes`` are all ``False``,
# ``chunk_size`` and ``num_shuffle_parts`` are meaningless
self
.
_chunk_size
=
int
(
self
.
_
db_size
/
self
.
_num_parts
)
+
1
self
.
_chunk_size
=
int
(
self
.
_
num_entries
/
self
.
_num_parts
)
+
1
self
.
_num_shuffle_parts
=
1
self
.
_perm
=
np
.
arange
(
self
.
_num_shuffle_parts
)
...
...
Dragon/python/setup.py
View file @
3b99076
...
...
@@ -42,7 +42,7 @@ find_modules()
setup
(
name
=
'dragon'
,
version
=
'0.2.2.
9
'
,
version
=
'0.2.2.
10
'
,
description
=
'Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework'
,
url
=
'https://github.com/seetaresearch/Dragon'
,
author
=
'Ting Pan'
,
...
...
Dragon/src/contrib/rcnn/bbox_utils.h
View file @
3b99076
...
...
@@ -114,7 +114,7 @@ inline void GenerateGridAnchors(
/******************** Proposal ********************/
template
<
typename
T
,
class
Context
>
inline
void
GenerateProposals
(
void
GenerateProposals
(
const
int
A
,
const
int
feat_h
,
const
int
feat_w
,
...
...
@@ -129,7 +129,7 @@ inline void GenerateProposals(
T
*
proposals
);
template
<
typename
T
,
class
Context
>
inline
void
GenerateProposals_v2
(
void
GenerateProposals_v2
(
const
int
total_anchors
,
const
float
im_h
,
const
float
im_w
,
...
...
Dragon/src/contrib/rcnn/proposal_op.cc
View file @
3b99076
...
...
@@ -34,7 +34,7 @@ void ProposalOp<Context>::RunWithType() {
rcnn
::
GenerateProposals
<
T
,
Context
>
(
A
,
feat_height
,
feat_width
,
strides
[
0
],
im_height
,
im_width
,
min_box_h
,
min_box_w
,
Input
(
0
).
template
data
<
T
,
Context
>
()
+
num_proposals
,
Input
(
0
).
template
data
<
T
,
Context
>
(),
Input
(
1
).
template
data
<
T
,
Context
>
(),
anchors_
.
template
mutable_data
<
T
,
Context
>
(),
proposals_
.
template
mutable_data
<
T
,
Context
>
());
...
...
@@ -59,9 +59,9 @@ void ProposalOp<Context>::RunWithType() {
CHECK_EQ
(
strides
.
size
(),
scales
.
size
())
<<
"
\n
Given "
<<
strides
.
size
()
<<
" strides and "
<<
scales
.
size
()
<<
" scales"
;
// cls_probs: [1,
2,
total_proposals]
// cls_probs: [1, total_proposals]
// bbox_deltas: [1, 4, total_proposals]
TIndex
total_proposals
=
Input
(
-
3
).
dim
(
2
),
acc_proposals
=
0
;
TIndex
total_proposals
=
Input
(
-
3
).
dim
(
1
),
acc_proposals
=
0
;
const
TIndex
pre_nms_topn
=
std
::
min
(
total_proposals
,
pre_nms_top_n
);;
proposals_
.
Reshape
({
total_proposals
,
5
});
auto
*
proposals
=
proposals_
.
template
mutable_data
<
T
,
CPUContext
>
();
...
...
@@ -93,7 +93,7 @@ void ProposalOp<Context>::RunWithType() {
rcnn
::
GenerateProposals_v2
<
T
,
Context
>
(
total_proposals
,
im_height
,
im_width
,
min_box_h
,
min_box_w
,
Input
(
-
3
).
template
data
<
T
,
Context
>
()
+
total_proposals
,
Input
(
-
3
).
template
data
<
T
,
Context
>
(),
Input
(
-
2
).
template
data
<
T
,
Context
>
(),
proposals_
.
template
mutable_data
<
T
,
Context
>
());
...
...
@@ -113,7 +113,7 @@ void ProposalOp<Context>::RunWithType() {
}
total_rois
+=
num_rois
;
Ydata
+=
(
num_rois
*
5
);
im_info
+=
3
;
im_info
+=
Input
(
-
1
).
dim
(
1
)
;
}
Output
(
0
)
->
Reshape
(
vector
<
TIndex
>
({
total_rois
,
5
}));
...
...
@@ -148,9 +148,9 @@ void ProposalOp<Context>::RunWithType() {
template
<
class
Context
>
void
ProposalOp
<
Context
>::
RunOnDevice
()
{
num_images
=
Input
(
0
).
dim
(
0
);
CHECK_EQ
(
Input
(
-
1
).
count
(),
num_images
*
3
)
<<
"
\n
Excepted "
<<
num_images
*
3
<<
" groups image info, "
<<
"but got "
<<
Input
(
-
1
).
count
()
/
3
<<
"."
;
CHECK_EQ
(
Input
(
-
1
).
dim
(
0
),
num_images
)
<<
"
\n
Excepted "
<<
num_images
<<
" groups image info, "
<<
"but got "
<<
Input
(
-
1
).
dim
(
0
)
<<
"."
;
roi_indices_
.
Reshape
({
post_nms_top_n
});
Output
(
0
)
->
Reshape
({
num_images
*
post_nms_top_n
,
5
});
...
...
Dragon/src/core/graph.cc
View file @
3b99076
...
...
@@ -231,17 +231,24 @@ GraphDef Graph::Share(const GraphDef& optimized_graph) {
GraphDef
g
;
g
.
CopyFrom
(
optimized_graph
);
// actually we need a white list
Set
<
string
>
whitelist
;
for
(
auto
&
target
:
optimized_graph
.
target
())
whitelist
.
insert
(
target
);
// rename to create in-place
for
(
int
i
=
0
;
i
<
optimized_graph
.
op_size
();
i
++
)
{
const
OperatorDef
&
op
=
optimized_graph
.
op
(
i
);
for
(
int
j
=
0
;
j
<
op
.
input_size
();
j
++
)
{
if
(
renamed_
.
count
(
op
.
input
(
j
))
&&
if
(
whitelist
.
count
(
op
.
input
(
j
))
==
0
&&
renamed_
.
count
(
op
.
input
(
j
))
&&
ws
()
->
SetProxy
(
op
.
input
(
j
),
renamed_
[
op
.
input
(
j
)]))
*
g
.
mutable_op
(
i
)
->
mutable_input
(
j
)
=
renamed_
[
op
.
input
(
j
)];
}
for
(
int
j
=
0
;
j
<
op
.
output_size
();
j
++
)
{
if
(
renamed_
.
count
(
op
.
output
(
j
))
&&
if
(
whitelist
.
count
(
op
.
output
(
j
))
==
0
&&
renamed_
.
count
(
op
.
output
(
j
))
&&
ws
()
->
SetProxy
(
op
.
output
(
j
),
renamed_
[
op
.
output
(
j
)]))
*
g
.
mutable_op
(
i
)
->
mutable_output
(
j
)
=
renamed_
[
op
.
output
(
j
)];
...
...
Dragon/src/operators/loss/sigmoid_cross_entropy_op.cc
View file @
3b99076
...
...
@@ -17,7 +17,7 @@ void SigmoidCrossEntropyOp<Context>::RunWithType() {
if
(
normalization
==
"UNIT"
)
{
Output
(
0
)
->
ReshapeLike
(
losses
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
losses
);
Output
(
0
)
->
template
Copy
From
<
Context
>
(
losses
);
return
;
}
...
...
Dragon/src/operators/loss/sigmoid_focal_loss_op.cc
View file @
3b99076
...
...
@@ -19,7 +19,7 @@ void SigmoidFocalLossOp<Context>::RunWithType() {
if
(
normalization
==
"UNIT"
)
{
Output
(
0
)
->
ReshapeLike
(
losses
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
losses
);
Output
(
0
)
->
template
Copy
From
<
Context
>
(
losses
);
return
;
}
...
...
Dragon/src/operators/loss/softmax_focal_loss_op.cc
View file @
3b99076
...
...
@@ -24,7 +24,7 @@ void SoftmaxFocalLossOp<Context>::RunWithType() {
if
(
normalization
==
"UNIT"
)
{
Output
(
0
)
->
ReshapeLike
(
losses
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
losses
);
Output
(
0
)
->
template
Copy
From
<
Context
>
(
losses
);
return
;
}
...
...
Dragon/src/operators/loss/sparse_softmax_cross_entropy_op.cc
View file @
3b99076
...
...
@@ -59,7 +59,7 @@ void SparseSoftmaxCrossEntropyOp<Context>::RunWithType() {
if
(
normalization
==
"UNIT"
)
{
Output
(
0
)
->
ReshapeLike
(
losses
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
losses
);
Output
(
0
)
->
template
Copy
From
<
Context
>
(
losses
);
return
;
}
...
...
@@ -167,7 +167,7 @@ void SparseSoftmaxCrossEntropyGradientOp<Context>::RunOnDevice() {
auto
*
dXdataF32
=
Output
(
0
)
->
template
data
<
float
,
Context
>
();
auto
*
dXdataF16
=
prob
->
template
mutable_data
<
float16
,
Context
>
();
kernel
::
TypeA2B
<
float
,
float16
,
Context
>
(
Output
(
0
)
->
count
(),
dXdataF32
,
dXdataF16
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
*
prob
);
Output
(
0
)
->
template
Copy
From
<
Context
>
(
*
prob
);
}
}
else
LOG
(
FATAL
)
<<
DTypeHelper
(
Input
(
0
),
{
"float32"
,
"float16"
});
}
...
...
Dragon/src/operators/misc/gradient_op.cc
View file @
3b99076
...
...
@@ -68,7 +68,7 @@ template <class Context>
void
StopGradientOp
<
Context
>::
RunOnDevice
()
{
if
(
Output
(
0
)
->
name
()
!=
Input
(
0
).
name
())
{
Output
(
0
)
->
ReshapeLike
(
Input
(
0
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
}
}
...
...
Dragon/src/operators/mpi/mpi_broadcast_op.cc
View file @
3b99076
...
...
@@ -14,7 +14,7 @@ void MPIBroadcastOp<Context>::RunWithType() {
auto
*
Xdata
=
Input
(
0
).
template
mutable_data
<
T
,
CPUContext
>
();
#endif
MPI_Bcast
(
Xdata
,
Input
(
0
).
count
(),
mpi_dtype
(),
comm_root
,
comm
);
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
}
else
{
#ifdef WITH_MPI_CUDA
auto
*
Ydata
=
Output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
...
...
Dragon/src/operators/mpi/mpi_gather_op.cc
View file @
3b99076
...
...
@@ -8,7 +8,7 @@ namespace dragon {
template
<
class
Context
>
template
<
typename
T
>
void
MPIGatherOp
<
Context
>::
RunWithType
()
{
if
(
comm_rank
==
comm_root
)
{
Output
(
comm_rank
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
comm_rank
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
for
(
int
i
=
0
;
i
<
comm_size
;
i
++
)
{
if
(
i
==
comm_root
)
continue
;
#ifdef WITH_MPI_CUDA
...
...
@@ -76,7 +76,7 @@ OPERATOR_SCHEMA(MPIGather).NumInputs(1).NumOutputs(1, INT_MAX);
template
<
class
Context
>
template
<
typename
T
>
void
MPIGatherGradientOp
<
Context
>::
RunWithType
()
{
if
(
comm_rank
==
comm_root
)
{
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
this
->
comm_rank
+
1
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
this
->
comm_rank
+
1
));
for
(
int
i
=
0
;
i
<
comm_size
;
i
++
)
{
if
(
i
==
comm_root
)
continue
;
#ifdef WITH_MPI_CUDA
...
...
Dragon/src/operators/ndarray/crop_op.cc
View file @
3b99076
...
...
@@ -125,7 +125,7 @@ void CropOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
0
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
// squeeze dimensions
vector
<
TIndex
>
squeeze_shape
;
for
(
int
i
=
0
;
i
<
keep_dims
.
size
();
i
++
)
...
...
@@ -229,7 +229,7 @@ void CropGradientOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
-
1
));
return
;
}
...
...
Dragon/src/operators/ndarray/expand_dims_op.cc
View file @
3b99076
#include "core/workspace.h"
#include "operators/ndarray/
expand_dims
_op.h"
#include "operators/ndarray/
dimension
_op.h"
namespace
dragon
{
template
<
class
Context
>
void
ExpandDimsOp
<
Context
>::
RunOnDevice
()
{
TIndex
_axis_
=
axis
>=
0
?
axis
:
axis
+
(
TIndex
)
Input
(
0
).
ndim
()
+
1
;
vector
<
TIndex
>
dims
=
Input
(
0
).
dims
();
if
(
axis
==
-
1
||
axis
>=
(
int
)
dims
.
size
())
dims
.
push_back
(
1
);
else
dims
.
insert
(
dims
.
begin
()
+
axis
,
1
);
// save Xshape
Tensor
*
sv
=
ws
()
->
CreateTensor
(
"/mnt/"
+
anchor
()
+
"/expand_dims/x_shape"
);
sv
->
Reshape
({
(
TIndex
)
Input
(
0
).
ndim
()
});
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
for
(
int
i
=
0
;
i
<
Input
(
0
).
ndim
();
i
++
)
Sdata
[
i
]
=
Input
(
0
).
dim
(
i
);
if
(
_axis_
<
0
||
_axis_
>=
(
TIndex
)
dims
.
size
())
dims
.
push_back
(
1
);
else
dims
.
insert
(
dims
.
begin
()
+
_axis_
,
1
);
Output
(
0
)
->
Reshape
(
dims
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
0
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
SetMeta
(
Input
(
0
).
meta
());
Output
(
0
)
->
Share
(
Input
(
0
).
memory
(
));
}
DEPLOY_CPU
(
ExpandDims
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
ExpandDims
);
#endif
OPERATOR_SCHEMA
(
ExpandDims
)
.
NumInputs
(
1
).
NumOutputs
(
1
)
.
Inplace
({
{
0
,
0
}
});
OPERATOR_SCHEMA
(
ExpandDims
).
NumInputs
(
1
).
NumOutputs
(
1
);
template
<
class
Context
>
void
ExpandDimsGradientOp
<
Context
>::
RunOnDevice
()
{
Tensor
*
sv
=
ws
()
->
GetTensor
(
"/mnt/"
+
anchor
()
+
"/expand_dims/x_shape"
);
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
vector
<
TIndex
>
x_shape
(
sv
->
count
());
for
(
int
i
=
0
;
i
<
sv
->
count
();
i
++
)
x_shape
[
i
]
=
Sdata
[
i
];
Output
(
0
)
->
Reshape
(
x_shape
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
-
1
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
}
DEPLOY_CPU
(
ExpandDimsGradient
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
ExpandDimsGradient
);
#endif
OPERATOR_SCHEMA
(
ExpandDimsGradient
)
.
NumInputs
(
1
).
NumOutputs
(
1
)
.
Inplace
({
{
0
,
0
}
});
.
NumInputs
(
2
).
NumOutputs
(
1
).
Inplace
({
{
1
,
0
}
});
class
GetExpandDimsGradient
final
:
public
GradientMakerBase
{
public
:
GRADIENT_MAKER_CTOR
(
GetExpandDimsGradient
);
vector
<
OperatorDef
>
MakeDefs
()
override
{
return
SingleDef
(
def
.
type
()
+
"Gradient"
,
""
,
vector
<
string
>
{
GO
(
0
)},
vector
<
string
>
{
I
(
0
),
GO
(
0
)},
vector
<
string
>
{
GI
(
0
)});
}
};
...
...
Dragon/src/operators/ndarray/flatten_op.cc
View file @
3b99076
#include "core/workspace.h"
#include "operators/ndarray/
flatte
n_op.h"
#include "operators/ndarray/
dimensio
n_op.h"
namespace
dragon
{
template
<
class
Context
>
void
FlattenOp
<
Context
>::
SqueezeRun
()
{
void
FlattenOp
<
Context
>::
RunOnDevice
()
{
vector
<
TIndex
>
output_dims
;
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
output_dims
.
push_back
(
Input
(
0
).
dim
(
i
));
if
(
num_axes
<
1
)
{
output_dims
.
push_back
(
Input
(
0
).
count
(
axis
));
if
(
keep_axes
!=
INT_MAX
)
{
CHECK_LE
(
keep_axes
,
(
int
)
Input
(
0
).
ndim
())
<<
"
\n
The total number of axes is "
+
Input
(
0
).
ndim
()
<<
", can not keep "
+
keep_axes
<<
" ."
;
int
i
=
0
;
for
(;
i
<
keep_axes
-
1
;
i
++
)
output_dims
.
push_back
(
Input
(
0
).
dim
(
i
));
if
(
Input
(
0
).
count
(
i
)
!=
1
)
output_dims
.
push_back
(
Input
(
0
).
count
(
i
));
}
else
{
TIndex
count
=
Input
(
0
).
count
(
axis
,
axis
+
num_axes
);
output_dims
.
push_back
(
count
);
for
(
int
i
=
axis
+
num_axes
;
i
<
Input
(
0
).
ndim
();
i
++
)
for
(
int
i
=
0
;
i
<
axis
;
i
++
)
output_dims
.
push_back
(
Input
(
0
).
dim
(
i
));
if
(
num_axes
<
1
)
{
output_dims
.
push_back
(
Input
(
0
).
count
(
axis
));
}
else
{
TIndex
count
=
Input
(
0
).
count
(
axis
,
axis
+
num_axes
);
output_dims
.
push_back
(
count
);
for
(
int
i
=
axis
+
num_axes
;
i
<
Input
(
0
).
ndim
();
i
++
)
output_dims
.
push_back
(
Input
(
0
).
dim
(
i
));
}
}
Output
(
0
)
->
Reshape
(
output_dims
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
0
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
}
template
<
class
Context
>
void
FlattenOp
<
Context
>::
KeepRun
()
{
CHECK_LE
(
keep_axes
,
(
int
)
Input
(
0
).
ndim
())
<<
"
\n
The total number of axes is "
+
Input
(
0
).
ndim
()
<<
", can not keep "
+
keep_axes
<<
" ."
;
vector
<
TIndex
>
output_dims
;
int
i
=
0
;
for
(;
i
<
keep_axes
-
1
;
i
++
)
output_dims
.
push_back
(
Input
(
0
).
dim
(
i
));
if
(
Input
(
0
).
count
(
i
)
!=
1
)
output_dims
.
push_back
(
Input
(
0
).
count
(
i
));
if
(
Output
(
0
)
->
name
()
!=
Input
(
0
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
}
template
<
class
Context
>
void
FlattenOp
<
Context
>::
RunOnDevice
()
{
// save Xshape
Tensor
*
sv
=
ws
()
->
CreateTensor
(
"/mnt/"
+
anchor
()
+
"/flatten/x_shape"
);
sv
->
Reshape
({
(
TIndex
)
Input
(
0
).
ndim
()
});
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
for
(
int
i
=
0
;
i
<
Input
(
0
).
ndim
();
i
++
)
Sdata
[
i
]
=
Input
(
0
).
dim
(
i
);
if
(
keep_axes
!=
INT_MAX
)
KeepRun
();
else
SqueezeRun
();
Output
(
0
)
->
SetMeta
(
Input
(
0
).
meta
());
Output
(
0
)
->
Share
(
Input
(
0
).
memory
());
}
DEPLOY_CPU
(
Flatten
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
Flatten
);
#endif
OPERATOR_SCHEMA
(
Flatten
)
.
NumInputs
(
1
).
NumOutputs
(
1
)
.
Inplace
({
{
0
,
0
}
});
OPERATOR_SCHEMA
(
Flatten
).
NumInputs
(
1
).
NumOutputs
(
1
);
template
<
class
Context
>
void
FlattenGradientOp
<
Context
>::
RunOnDevice
()
{
Tensor
*
sv
=
ws
()
->
GetTensor
(
"/mnt/"
+
anchor
()
+
"/flatten/x_shape"
);
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
vector
<
TIndex
>
x_shape
(
sv
->
count
());
for
(
int
i
=
0
;
i
<
sv
->
count
();
i
++
)
x_shape
[
i
]
=
Sdata
[
i
];
Output
(
0
)
->
Reshape
(
x_shape
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
-
1
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
}
DEPLOY_CPU
(
FlattenGradient
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
FlattenGradient
);
#endif
OPERATOR_SCHEMA
(
FlattenGradient
)
.
NumInputs
(
1
).
NumOutputs
(
1
)
.
Inplace
({
{
0
,
0
}
});
.
NumInputs
(
2
).
NumOutputs
(
1
).
Inplace
({
{
1
,
0
}
});
class
GetFlattenGradient
final
:
public
GradientMakerBase
{
public
:
GRADIENT_MAKER_CTOR
(
GetFlattenGradient
);
vector
<
OperatorDef
>
MakeDefs
()
override
{
return
SingleDef
(
def
.
type
()
+
"Gradient"
,
""
,
vector
<
string
>
{
GO
(
0
)},
vector
<
string
>
{
I
(
0
),
GO
(
0
)},
vector
<
string
>
{
GI
(
0
)});
}
};
...
...
Dragon/src/operators/ndarray/pad_op.cc
View file @
3b99076
...
...
@@ -61,7 +61,7 @@ void PadOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
0
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
return
;
}
...
...
@@ -175,7 +175,7 @@ void PadGradientOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
-
1
));
return
;
}
...
...
Dragon/src/operators/ndarray/random_pick_op.cc
View file @
3b99076
...
...
@@ -39,7 +39,7 @@ void RandomPickOp<Context>::RunOnDevice() {
if
(
Output
(
1
)
->
name
()
!=
"ignore"
)
{
Output
(
1
)
->
ReshapeLike
(
*
pick_indices
);
Output
(
1
)
->
template
Copy
<
Context
,
Context
>
(
*
pick_indices
);
Output
(
1
)
->
template
Copy
From
<
Context
>
(
*
pick_indices
);
}
}
...
...
Dragon/src/operators/ndarray/reshape_op.cc
View file @
3b99076
#include "core/workspace.h"
#include "operators/ndarray/
reshape
_op.h"
#include "operators/ndarray/
dimension
_op.h"
namespace
dragon
{
...
...
@@ -67,50 +67,31 @@ void ReshapeOp<Context>::RunOnDevice() {
<<
"
\n
Can not change the total size."
<<
Input
(
0
).
DimString
()
<<
" -> "
<<
DimString
(
new_shape
);
// save Xshape
Tensor
*
sv
=
ws
()
->
CreateTensor
(
"/mnt/"
+
anchor
()
+
"/reshape/x_shape"
);
sv
->
Reshape
({
(
TIndex
)
Input
(
0
).
ndim
()
});
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
for
(
int
i
=
0
;
i
<
Input
(
0
).
ndim
();
i
++
)
Sdata
[
i
]
=
Input
(
0
).
dim
(
i
);
Output
(
0
)
->
Reshape
(
new_shape
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
0
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
Reshape
(
new_shape
);
Output
(
0
)
->
SetMeta
(
Input
(
0
).
meta
());
Output
(
0
)
->
Share
(
Input
(
0
).
memory
());
}
DEPLOY_CPU
(
Reshape
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
Reshape
);
#endif
OPERATOR_SCHEMA
(
Reshape
)
.
NumInputs
(
1
).
NumOutputs
(
1
)
.
Inplace
({
{
0
,
0
}
});
OPERATOR_SCHEMA
(
Reshape
).
NumInputs
(
1
).
NumOutputs
(
1
);
template
<
class
Context
>
void
ReshapeGradientOp
<
Context
>::
RunOnDevice
()
{
Tensor
*
sv
=
ws
()
->
GetTensor
(
"/mnt/"
+
anchor
()
+
"/reshape/x_shape"
);
auto
*
Sdata
=
sv
->
template
mutable_data
<
TIndex
,
CPUContext
>
();
vector
<
TIndex
>
x_shape
(
sv
->
count
());
for
(
int
i
=
0
;
i
<
sv
->
count
();
i
++
)
x_shape
[
i
]
=
Sdata
[
i
];
Output
(
0
)
->
Reshape
(
x_shape
);
if
(
Output
(
0
)
->
name
()
!=
Input
(
-
1
).
name
())
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
}
DEPLOY_CPU
(
ReshapeGradient
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
ReshapeGradient
);
#endif
OPERATOR_SCHEMA
(
ReshapeGradient
).
NumInputs
(
1
).
NumOutputs
(
1
).
Inplace
({
{
0
,
0
}
});
OPERATOR_SCHEMA
(
ReshapeGradient
)
.
NumInputs
(
2
).
NumOutputs
(
1
).
Inplace
({
{
1
,
0
}
});
class
GetReshapeGradient
final
:
public
GradientMakerBase
{
public
:
GRADIENT_MAKER_CTOR
(
GetReshapeGradient
);
vector
<
OperatorDef
>
MakeDefs
()
override
{
return
SingleDef
(
def
.
type
()
+
"Gradient"
,
""
,
vector
<
string
>
{
GO
(
0
)},
vector
<
string
>
{
I
(
0
),
GO
(
0
)},
vector
<
string
>
{
GI
(
0
)});
}
};
...
...
Dragon/src/operators/ndarray/squeeze_op.cc
0 → 100644
View file @
3b99076
#include "core/workspace.h"
#include "operators/ndarray/dimension_op.h"
namespace
dragon
{
template
<
class
Context
>
void
SqueezeOp
<
Context
>::
RunOnDevice
()
{
TIndex
_axis_
=
axis
>=
0
?
axis
:
axis
+
(
TIndex
)
Input
(
0
).
ndim
();
vector
<
TIndex
>
dims
;
for
(
int
i
=
0
;
i
<
Input
(
0
).
ndim
();
i
++
)
if
((
Input
(
0
).
dim
(
i
)
!=
1
)
||
(
_axis_
!=
INT_MAX
&&
Input
(
0
).
dim
(
i
)
==
1
&&
i
!=
_axis_
))
dims
.
push_back
(
Input
(
0
).
dim
(
i
));
Output
(
0
)
->
Reshape
(
dims
);
Output
(
0
)
->
SetMeta
(
Input
(
0
).
meta
());
Output
(
0
)
->
Share
(
Input
(
0
).
memory
());
}
DEPLOY_CPU
(
Squeeze
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
Squeeze
);
#endif
OPERATOR_SCHEMA
(
Squeeze
).
NumInputs
(
1
).
NumOutputs
(
1
);
DEPLOY_CPU
(
SqueezeGradient
);
#ifdef WITH_CUDA
DEPLOY_CUDA
(
SqueezeGradient
);
#endif
OPERATOR_SCHEMA
(
SqueezeGradient
)
.
NumInputs
(
2
).
NumOutputs
(
1
).
Inplace
({
{
1
,
0
}
});
class
GetSqueezeGradient
final
:
public
GradientMakerBase
{
public
:
GRADIENT_MAKER_CTOR
(
GetSqueezeGradient
);
vector
<
OperatorDef
>
MakeDefs
()
override
{
return
SingleDef
(
def
.
type
()
+
"Gradient"
,
""
,
vector
<
string
>
{
I
(
0
),
GO
(
0
)},
vector
<
string
>
{
GI
(
0
)});
}
};
REGISTER_GRADIENT
(
Squeeze
,
GetSqueezeGradient
);
}
//
namespace
dragon
\ No newline at end of file
Dragon/src/operators/ndarray/tile_op.cc
View file @
3b99076
...
...
@@ -35,7 +35,7 @@ void TileOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
0
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
0
));
return
;
}
...
...
@@ -96,7 +96,7 @@ void TileGradientOp<Context>::RunOnDevice() {
// do nothing
if
(
process_axes
.
size
()
==
0
)
{
Output
(
0
)
->
ReshapeLike
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
<
Context
,
Context
>
(
Input
(
-
1
));
Output
(
0
)
->
template
Copy
From
<
Context
>
(
Input
(
-
1
));
return
;
}
...
...
Dragon/src/operators/vision/lrn_op.cc
View file @
3b99076
...
...
@@ -17,11 +17,11 @@ template <class Context> template <typename T>
void
LRNOp
<
Context
>::
SplitRunWithType
()
{
sqr_in
=
ws
()
->
CreateTensor
(
"/mnt/"
+
anchor
()
+
"/sqr/in"
);
sqr_in
->
ReshapeLike
(
Input
(
0
));
sqr_in
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
sqr_in
->
template
Copy
From
<
Context
>
(
Input
(
0
));
prod_in
=
ws
()
->
CreateTensor
(
"/mnt/"
+
anchor
()
+
"/prod/in"
);
prod_in
->
ReshapeLike
(
Input
(
0
));
prod_in
->
template
Copy
<
Context
,
Context
>
(
Input
(
0
));
prod_in
->
template
Copy
From
<
Context
>
(
Input
(
0
));
}
template
<
class
Context
>
template
<
typename
T
>
...
...
Dragon/src/protos/caffemodel.proto
View file @
3b99076
syntax
=
"proto2"
;
package
dragon
;
message
BlobShape
{
repeated
int64
dim
=
1
[
packed
=
true
];
}
...
...
Dragon/src/protos/dragon.proto
View file @
3b99076
syntax
=
"proto2"
;
package
dragon
;
message
TensorProto
{
repeated
int32
dims
=
1
;
enum
DataType
{
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment