Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
Dragon
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 3d2abe69
authored
Mar 06, 2018
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Mix Static/Dynamic Arguments
1 parent
04fdadb0
Hide whitespace changes
Inline
Side-by-side
Showing
28 changed files
with
288 additions
and
205 deletions
Dragon/include/core/operator.h
Dragon/include/operators/activation/dropout_op.h
Dragon/include/operators/misc/initialize_op.h
Dragon/include/operators/ndarray/arange_op.h
Dragon/include/operators/ndarray/repeat_op.h
Dragon/include/operators/ndarray/tile_op.h
Dragon/include/operators/vision/bilinear_resize_op.h
Dragon/include/operators/vision/conv_op_base.h
Dragon/include/operators/vision/nn_resize_op.h
Dragon/python/dragon/__init__.py
Dragon/python/dragon/operators/__init__.py
Dragon/python/dragon/operators/activation.py
Dragon/python/dragon/operators/initializer.py
Dragon/python/dragon/operators/ndarray.py
Dragon/python/dragon/operators/vision.py
Dragon/python/dragon/updaters.py
Dragon/python/dragon/vm/caffe/layers/vision.py
Dragon/python/setup.py
Dragon/src/operators/activation/dropout_op.cc
Dragon/src/operators/loss/softmax_cross_entropy_op.cc
Dragon/src/operators/misc/initialize_op.cc
Dragon/src/operators/ndarray/arange_op.cc
Dragon/src/operators/ndarray/repeat_op.cc
Dragon/src/operators/ndarray/tile_op.cc
Dragon/src/operators/vision/bilinear_resize_op.cc
Dragon/src/operators/vision/conv_op_base.cc
Dragon/src/operators/vision/nn_resize_op.cc
examples/GA3C/ProcessAgent.py
Dragon/include/core/operator.h
View file @
3d2abe6
...
...
@@ -68,13 +68,13 @@ class OperatorBase {
template
<
class
Context
>
class
Operator
:
public
OperatorBase
{
public
:
Operator
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
Operator
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
OperatorBase
(
op_def
,
ws
),
ctx_
(
op_def
.
device_option
())
{
allow_run_
=
true
;
allow_run_
&=
_MPICheck
();
allow_run_
&=
(
!
(
OutputSize
()
==
1
&&
output
(
0
)
->
name
()
==
"ignore"
));
allow_share_grads_
=
(
!
op_def
.
debug_mode
());
allow_share_grads_
&=
op_def
.
share_grads
();
allow_share_grads_
&=
op_def
.
share_grads
();
allow_share_grads_
&=
(
type
().
find
(
"Gradient"
)
!=
string
::
npos
);
}
...
...
@@ -167,6 +167,53 @@ DECLARE_REGISTRY(CUDNNOperatorRegistry, OperatorBase, const OperatorDef&, Worksp
} \
}
#define DECLARE_ARGUMENT_WITH_DESC(type, argument) \
type argument##_value; \
string argument##_desc; \
type argument()
#define DECLARE_ARGUMENTS_WITH_DESC(type, argument) \
vector<type> argument##_value; \
vector<string> argument##_desc; \
type argument(int idx)
#define GET_ARGUMENT_WITH_DESC(type, argument, default_value) \
argument##_value = OperatorBase::GetSingleArg<type>(#argument, default_value); \
argument##_desc = OperatorBase::GetSingleArg<string>(string(#argument) + "_desc", "")
#define GET_ARGUMENTS_WITH_DESC(type, argument) \
argument##_value = OperatorBase::GetRepeatedArg<type>(#argument); \
argument##_desc = OperatorBase::GetRepeatedArg<string>(string(#argument) + "_desc")
#define DEFINE_ARGUMENT_WITH_DESC(type, classname, argument) \
template <class Context> \
type classname<Context>::argument() { \
if (argument##_desc.empty()) return argument##_value; \
Tensor* argument##_tensor = ws()->GetTensor(argument##_desc); \
CHECK(argument##_tensor->IsType<type>()) \
<< "\nThe type of " << #argument << " should be " << #type << "."; \
CHECK_EQ(argument##_tensor->count(), 1) \
<< "\nThe argument of " << #argument << " should be a scalar"; \
return argument##_tensor->template data<type, CPUContext>()[0]; \
}
#define DEFINE_ARGUMENTS_WITH_DESC(type, classname, argument) \
template <class Context> \
type classname<Context>::argument(int idx) { \
if (argument##_desc.empty()) { \
CHECK_LT(idx, argument##_value.size()); \
return argument##_value[idx]; \
} \
CHECK_LT(idx, argument##_desc.size()); \
Tensor* argument##_tensor = ws()->GetTensor(argument##_desc[idx]); \
CHECK(argument##_tensor->IsType<type>()) \
<< "\nThe type of " << #argument << " should be " << #type; \
CHECK_EQ(argument##_tensor->count(), 1) \
<< "\nThe argument of " << #argument << " at pos(" \
<< idx << ") should be a scalar."; \
return argument##_tensor->template data<type, CPUContext>()[0]; \
}
#define DISABLE_SHARE_GRADIENT \
this->allow_share_grads_ = false
...
...
@@ -202,4 +249,4 @@ DECLARE_REGISTRY(CUDNNOperatorRegistry, OperatorBase, const OperatorDef&, Worksp
INSTANTIATE_CUDNN_OPERATOR(name);
}
// namespace dragon
#endif // DRAGON_CORE_OPERATOR_H_
\ No newline at end of file
#endif // DRAGON_CORE_OPERATOR_H_
Dragon/include/operators/activation/dropout_op.h
View file @
3d2abe6
...
...
@@ -17,32 +17,26 @@ class DropoutOp final : public Operator<Context> {
public
:
DropoutOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
prob
(
OperatorBase
::
GetSingleArg
<
float
>
(
"prob"
,
0
.
5
))
{
bool
use_scale
=
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
);
threshold
=
static_cast
<
unsigned
int
>
(
UINT_MAX
*
prob
);
if
(
use_scale
)
scale
=
1
.
0
/
(
1
.
0
-
prob
);
else
scale
=
1
.
0
;
use_scale
(
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
))
{
GET_ARGUMENT_WITH_DESC
(
float
,
prob
,
0
.
5
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
float
prob
,
scale
;
unsigned
int
threshold
;
DECLARE_ARGUMENT_WITH_DESC
(
float
,
prob
)
;
bool
use_scale
;
Tensor
*
mask
;
};
template
<
class
Context
>
class
DropoutGradientOp
final
:
public
Operator
<
Context
>
{
public
:
DropoutGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
DropoutGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
prob
(
OperatorBase
::
GetSingleArg
<
float
>
(
"prob"
,
0
.
5
))
{
bool
use_scale
=
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
);
threshold
=
static_cast
<
unsigned
int
>
(
UINT_MAX
*
prob
);
if
(
use_scale
)
scale
=
1
.
0
/
(
1
.
0
-
prob
);
else
scale
=
1
.
0
;
use_scale
(
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
))
{
GET_ARGUMENT_WITH_DESC
(
float
,
prob
,
0
.
5
);
DISABLE_SHARE_GRADIENT
;
}
...
...
@@ -50,11 +44,14 @@ class DropoutGradientOp final : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
protected
:
float
prob
,
scale
;
unsigned
int
threshold
;
DECLARE_ARGUMENT_WITH_DESC
(
float
,
prob
)
;
bool
use_scale
;
Tensor
*
mask
;
};
DEFINE_ARGUMENT_WITH_DESC
(
float
,
DropoutOp
,
prob
);
DEFINE_ARGUMENT_WITH_DESC
(
float
,
DropoutGradientOp
,
prob
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_ACTIVATION_DROPOUT_OP_H_
\ No newline at end of file
Dragon/include/operators/misc/initialize_op.h
View file @
3d2abe6
...
...
@@ -17,14 +17,15 @@ class InitializeOp: public Operator<Context> {
public
:
InitializeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
dims_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dims"
)),
shape_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape"
,
""
))
{}
shape_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape"
,
""
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
dims
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
vector
<
string
>
dims_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dims
)
;
string
shape_desc
;
TensorFiller
filler
;
};
...
...
@@ -116,6 +117,8 @@ public:
}
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
InitializeOp
,
dims
);
}
// namespace
#endif // DRAGON_OPERATORS_MISC_INITIALIZE_OP_H_
#endif // DRAGON_OPERATORS_MISC_INITIALIZE_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/arange_op.h
View file @
3d2abe6
...
...
@@ -16,21 +16,26 @@ class ArangeOp final : public Operator<Context> {
public
:
ArangeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
start_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"start"
,
""
)),
stop_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"stop"
,
""
)),
step_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"step"
,
""
)),
dtype
(
OperatorBase
::
GetSingleArg
<
string
>
(
"dtype"
,
"FLOAT32"
))
{}
void
Reshape
();
dtype
(
OperatorBase
::
GetSingleArg
<
string
>
(
"dtype"
,
"FLOAT32"
))
{
GET_ARGUMENT_WITH_DESC
(
int
,
start
,
0
);
GET_ARGUMENT_WITH_DESC
(
int
,
stop
,
0
);
GET_ARGUMENT_WITH_DESC
(
int
,
step
,
1
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
string
start_desc
,
stop_desc
,
step_desc
,
dtype
;
TIndex
start
,
stop
,
step
,
count
;
DECLARE_ARGUMENT_WITH_DESC
(
int
,
start
);
DECLARE_ARGUMENT_WITH_DESC
(
int
,
stop
);
DECLARE_ARGUMENT_WITH_DESC
(
int
,
step
);
string
dtype
;
};
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
start
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
stop
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
step
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_ARANGE_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/repeat_op.h
View file @
3d2abe6
...
...
@@ -16,15 +16,16 @@ class RepeatOp : public Operator<Context> {
public
:
RepeatOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
repeats_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
))
{
GET_ARGUMENT_WITH_DESC
(
int
,
repeats
,
1
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
string
repeats_desc
;
DECLARE_ARGUMENT_WITH_DESC
(
int
,
repeats
)
;
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
;
};
template
<
class
Context
>
...
...
@@ -32,17 +33,21 @@ class RepeatGradientOp : public Operator<Context> {
public
:
RepeatGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
repeats_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
))
{
GET_ARGUMENT_WITH_DESC
(
int
,
repeats
,
1
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
DECLARE_ARGUMENT_WITH_DESC
(
int
,
repeats
);
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
string
repeats_desc
;
};
DEFINE_ARGUMENT_WITH_DESC
(
int
,
RepeatOp
,
repeats
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
RepeatGradientOp
,
repeats
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_REPEAT_OP_H_
Dragon/include/operators/ndarray/tile_op.h
View file @
3d2abe6
...
...
@@ -15,14 +15,15 @@ template <class Context>
class
TileOp
:
public
Operator
<
Context
>
{
public
:
TileOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
multiples_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"multiples"
))
{}
:
Operator
<
Context
>
(
op_def
,
ws
)
{
GET_ARGUMENTS_WITH_DESC
(
int
,
multiples
);
}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
TileRunWithType
();
protected
:
vector
<
string
>
multiples_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
multiples
)
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
Tensor
*
dest
,
*
source
;
};
...
...
@@ -31,8 +32,8 @@ template <class Context>
class
TileGradientOp
:
public
Operator
<
Context
>
{
public
:
TileGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
)
,
multiples_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"multiples"
))
{
:
Operator
<
Context
>
(
op_def
,
ws
)
{
GET_ARGUMENTS_WITH_DESC
(
int
,
multiples
);
DISABLE_SHARE_GRADIENT
;
}
...
...
@@ -40,11 +41,14 @@ class TileGradientOp : public Operator<Context> {
template
<
typename
T
>
void
TileRunWithType
();
protected
:
vector
<
string
>
multiples_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
multiples
)
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
Tensor
*
dest
,
*
source
;
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
TileOp
,
multiples
);
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
TileGradientOp
,
multiples
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_TILE_OP_H_
\ No newline at end of file
Dragon/include/operators/vision/bilinear_resize_op.h
View file @
3d2abe6
...
...
@@ -16,10 +16,11 @@ class BilinearResizeOp : public Operator<Context> {
public
:
BilinearResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
dsize_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dsize"
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
shape_like_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape_like"
,
""
)),
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
dsize
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
...
@@ -28,11 +29,10 @@ class BilinearResizeOp : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
protected
:
vector
<
string
>
dsize_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dsize
)
;
float
fy
,
fx
;
string
data_format
;
string
data_format
,
shape_like_desc
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
vector
<
TIndex
>
dims
;
};
template
<
class
Context
>
...
...
@@ -50,6 +50,8 @@ class BilinearResizeGradientOp : public Operator<Context> {
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
BilinearResizeOp
,
dsize
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_BILINEAR_RESIZE_OP_H_
\ No newline at end of file
Dragon/include/operators/vision/conv_op_base.h
View file @
3d2abe6
...
...
@@ -21,8 +21,9 @@ class ConvOpBase : public Operator<Context> {
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
)),
padding
(
OperatorBase
::
GetSingleArg
<
string
>
(
"padding"
,
"VALID"
)),
num_output
(
OperatorBase
::
GetSingleArg
<
int
>
(
"num_output"
,
1
)),
group
(
OperatorBase
::
GetSingleArg
<
int
>
(
"group"
,
1
)),
output_dims_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"output_shape"
))
{
group
(
OperatorBase
::
GetSingleArg
<
int
>
(
"group"
,
1
))
{
output_dims_value
=
OperatorBase
::
GetRepeatedArg
<
int
>
(
"output_shape"
);
output_dims_desc
=
OperatorBase
::
GetRepeatedArg
<
string
>
(
"output_shape_desc"
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
...
@@ -41,7 +42,7 @@ class ConvOpBase : public Operator<Context> {
TIndex
conv_in_channels
,
conv_out_channels
;
TIndex
conv_out_spatial_dim
,
kernel_dim
;
TIndex
col_offset
,
output_offset
,
weight_offset
,
x_offset
,
y_offset
;
vector
<
string
>
output_dims_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
output_dims
)
;
bool
is_1x1
;
void
Setup
();
...
...
@@ -87,6 +88,8 @@ class ConvOpBase : public Operator<Context> {
}
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
ConvOpBase
,
output_dims
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_CONV_OP_BASE_H_
\ No newline at end of file
Dragon/include/operators/vision/nn_resize_op.h
View file @
3d2abe6
...
...
@@ -16,10 +16,11 @@ class NNResizeOp : public Operator<Context> {
public
:
NNResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
dsize_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dsize"
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
shape_like_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape_like"
,
""
)),
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
dsize
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
...
@@ -29,9 +30,9 @@ class NNResizeOp : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
protected
:
vector
<
string
>
dsize_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dsize
)
;
float
fy
,
fx
;
string
data_format
;
string
data_format
,
shape_like_desc
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
};
...
...
@@ -50,6 +51,8 @@ class NNResizeGradientOp : public Operator<Context> {
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
NNResizeOp
,
dsize
);
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_NN_RESIZE_OP_H_
\ No newline at end of file
Dragon/python/dragon/__init__.py
View file @
3d2abe6
...
...
@@ -4,6 +4,10 @@
# Written by Ting Pan
# --------------------------------------------------------
# config
from
dragon.config
import
*
import
dragon.config
as
config
# core
from
dragon.core.tensor
import
Tensor
import
dragon.core.workspace
as
workspace
...
...
Dragon/python/dragon/operators/__init__.py
View file @
3d2abe6
...
...
@@ -36,4 +36,38 @@ def CheckInputs(inputs, *args):
def
ParseArguments
(
locals
):
__all__
=
locals
kwargs
=
__all__
[
'kwargs'
];
del
__all__
[
'kwargs'
]
return
dict
(
__all__
,
**
kwargs
)
\ No newline at end of file
return
dict
(
__all__
,
**
kwargs
)
def
AddArgumentWithDesc
(
arguments
,
property
,
name
,
as_target
=
True
):
if
isinstance
(
property
,
Tensor
):
if
as_target
:
if
not
'extra_inputs'
in
arguments
:
arguments
[
'extra_inputs'
]
=
[]
arguments
[
'extra_inputs'
]
.
extend
([
property
])
arguments
[
name
]
=
None
arguments
[
name
+
'_desc'
]
=
property
.
name
return
arguments
def
AddArgumentsWithDesc
(
arguments
,
properties
,
name
,
type
,
as_target
=
True
):
if
not
isinstance
(
properties
,
(
list
,
tuple
)):
properties
=
[
properties
]
# check whether to use desc
tensor_in_properties
=
False
for
property
in
properties
:
if
isinstance
(
property
,
Tensor
):
tensor_in_properties
=
True
if
tensor_in_properties
:
properties_t
=
[]
for
property
in
properties
:
if
isinstance
(
property
,
Tensor
):
if
as_target
:
if
not
'extra_inputs'
in
arguments
:
arguments
[
'extra_inputs'
]
=
[]
arguments
[
'extra_inputs'
]
.
extend
([
property
])
properties_t
.
append
(
property
.
name
)
else
:
properties_t
.
append
(
Tensor
.
Convert
(
property
,
dtype
=
type
)
.
name
)
arguments
[
name
]
=
None
arguments
[
name
+
'_desc'
]
=
properties_t
return
arguments
\ No newline at end of file
Dragon/python/dragon/operators/activation.py
View file @
3d2abe6
...
...
@@ -201,7 +201,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
----------
inputs : Tensor
The input tensor.
prob : float
prob : float
or Tensor
The prob of dropping. Default is ``0.5``.
scale : boolean
Whether to scale the output during training.
...
...
@@ -214,6 +214,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
"""
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
=
AddArgumentWithDesc
(
arguments
,
prob
,
'prob'
,
as_target
=
False
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Dropout'
,
**
arguments
)
...
...
Dragon/python/dragon/operators/initializer.py
View file @
3d2abe6
...
...
@@ -16,9 +16,9 @@ def _wrap_input_shape(arguments, shape):
arguments
[
'extra_inputs'
]
=
shape
arguments
[
'shape'
]
=
shape
.
name
elif
isinstance
(
shape
,
(
list
,
tuple
)):
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
dim
,
dtype
=
'int32'
)
for
dim
in
shape
]
arguments
[
'dims'
]
=
[
dim
.
name
for
dim
in
arguments
[
'extra_inputs'
]]
arguments
[
'dims'
]
=
shape
arguments
[
'shape'
]
=
None
AddArgumentsWithDesc
(
arguments
,
shape
,
'dims'
,
'int32'
,
as_target
=
True
)
else
:
raise
TypeError
(
'Unsupported type of shape: {}'
.
format
(
type
(
shape
)))
return
arguments
...
...
Dragon/python/dragon/operators/ndarray.py
View file @
3d2abe6
...
...
@@ -455,8 +455,7 @@ def Repeat(inputs, axis=-1, repeats=1, **kwargs):
"""
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
repeats
,
dtype
=
'int32'
)]
arguments
[
'repeats'
]
=
arguments
[
'extra_inputs'
][
0
]
.
name
arguments
=
AddArgumentWithDesc
(
arguments
,
repeats
,
'repeats'
,
as_target
=
True
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Repeat'
,
**
arguments
)
...
...
@@ -492,8 +491,7 @@ def Tile(inputs, multiples, **kwargs):
"""
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
multiple
,
dtype
=
'int32'
)
for
multiple
in
multiples
]
arguments
[
'multiples'
]
=
[
multiple
.
name
for
multiple
in
arguments
[
'extra_inputs'
]]
arguments
=
AddArgumentsWithDesc
(
arguments
,
multiples
,
'multiples'
,
'int32'
,
as_target
=
True
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Tile'
,
**
arguments
)
...
...
@@ -779,14 +777,11 @@ def Arange(start, stop=None, step=1, dtype='FLOAT32', **kwargs):
"""
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
start
,
dtype
=
'int32'
),
Tensor
.
Convert
(
step
,
dtype
=
'int32'
)]
arguments
[
'start'
]
=
arguments
[
'extra_inputs'
][
0
]
.
name
arguments
[
'step'
]
=
arguments
[
'extra_inputs'
][
1
]
.
name
if
stop
is
not
None
:
arguments
[
'extra_inputs'
]
.
append
(
Tensor
.
Convert
(
stop
,
dtype
=
'int32'
))
arguments
[
'stop'
]
=
arguments
[
'extra_inputs'
][
-
1
]
.
name
arguments
[
'dtype'
]
=
arguments
[
'dtype'
]
.
upper
()
arguments
=
AddArgumentWithDesc
(
arguments
,
start
,
'start'
,
as_target
=
True
)
arguments
=
AddArgumentWithDesc
(
arguments
,
step
,
'step'
,
as_target
=
True
)
if
stop
is
not
None
:
arguments
=
AddArgumentWithDesc
(
arguments
,
stop
,
'stop'
,
as_target
=
True
)
output
=
Tensor
.
CreateOperator
([],
nout
=
1
,
op_type
=
'Arange'
,
**
arguments
)
...
...
Dragon/python/dragon/operators/vision.py
View file @
3d2abe6
...
...
@@ -139,7 +139,7 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
The dilation multiple(s) of deconvolution. Default is ``1``.
group : int
The group size of deconvolution. Default is ``1``.
output_shape : list o
f int o
r None
output_shape : list or None
The deterministic output shape for **SAME** padding.
padding : str
The padding algorithm. ``VALID`` or ``SAME``.
...
...
@@ -170,12 +170,8 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
if
data_format
not
in
(
'NCHW'
,
'NHWC'
):
raise
ValueError
(
'Unsupported data format: {}'
.
format
(
data_format
))
arguments
[
'output_shape'
]
=
None
if
output_shape
is
not
None
:
if
not
isinstance
(
output_shape
,
list
):
raise
TypeError
(
'The output shape should be a list.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
dim
,
dtype
=
'int32'
)
for
dim
in
output_shape
]
arguments
[
'output_shape'
]
=
[
dim
.
name
for
dim
in
arguments
[
'extra_inputs'
]]
AddArgumentsWithDesc
(
arguments
,
output_shape
,
'output_shape'
,
'int32'
,
as_target
=
True
)
if
not
isinstance
(
arguments
[
'kernel_size'
],
list
):
arguments
[
'kernel_size'
]
=
[
arguments
[
'kernel_size'
]]
...
...
@@ -400,7 +396,8 @@ def LRN(inputs, local_size=5, alpha=0.0001, beta=0.75, k=2.0,
return
output
def
NNResize
(
inputs
,
dsize
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
def
NNResize
(
inputs
,
dsize
,
shape_like
=
None
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
"""Resize the image with Nearest-Neighbor method.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
...
...
@@ -411,6 +408,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
The input tensor.
dsize : tuple, list, Tensor or None
The output size, formats as (h, w).
shape_like : Tensor or None
The tensor for guiding the shape of resizing.
fy : float
The scale factor based on src height. Default is ``-1.0`` (Discarded).
fx : float
...
...
@@ -433,11 +432,15 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
if
dsize
is
not
None
:
if
len
(
dsize
)
!=
2
:
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
size
,
dtype
=
'int32'
)
for
size
in
dsize
]
arguments
[
'dsize'
]
=
[
size
.
name
for
size
in
arguments
[
'extra_inputs'
]]
AddArgumentsWithDesc
(
arguments
,
dsize
,
'dsize'
,
'int32'
,
as_target
=
True
)
if
dsize
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize or fy/fx should be specified either.'
)
if
shape_like
is
not
None
:
if
not
isinstance
(
shape_like
,
Tensor
):
raise
TypeError
(
'The shape_like should be a Tensor.'
)
arguments
[
'shape_like'
]
=
shape_like
.
name
if
dsize
is
None
and
shape_like
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize, shape_like or fy/fx should be specified either.'
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'NNResize'
,
**
arguments
)
...
...
@@ -449,6 +452,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
for
size
in
dsize
:
if
isinstance
(
size
,
Tensor
):
possible_to_infer_shape
=
False
if
shape_like
is
not
None
:
possible_to_infer_shape
=
False
if
possible_to_infer_shape
:
output
.
shape
=
inputs
.
shape
[:]
...
...
@@ -464,7 +469,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
return
output
def
BilinearResize
(
inputs
,
dsize
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
def
BilinearResize
(
inputs
,
dsize
,
shape_like
=
None
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
"""Resize the image with Bi-linear method.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
...
...
@@ -475,6 +481,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
The input tensor.
dsize : tuple, list, Tensor or None
The output size, formats as (h, w).
shape_like : Tensor or None
The tensor for guiding the shape of resizing.
fy : float
The scale factor based on src height. Default is ``-1.0`` (Discarded).
fx : float
...
...
@@ -497,11 +505,15 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
if
dsize
is
not
None
:
if
len
(
dsize
)
!=
2
:
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
size
,
dtype
=
'int32'
)
for
size
in
dsize
]
arguments
[
'dsize'
]
=
[
size
.
name
for
size
in
arguments
[
'extra_inputs'
]]
AddArgumentsWithDesc
(
arguments
,
dsize
,
'dsize'
,
'int32'
,
as_target
=
True
)
if
shape_like
is
not
None
:
if
not
isinstance
(
shape_like
,
Tensor
):
raise
TypeError
(
'The shape_like should be a Tensor.'
)
arguments
[
'shape_like'
]
=
shape_like
.
name
if
dsize
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize or fy/fx should be specified either.'
)
if
dsize
is
None
and
shape_like
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize
, shape_like
or fy/fx should be specified either.'
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'BilinearResize'
,
**
arguments
)
...
...
@@ -513,6 +525,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
for
size
in
dsize
:
if
isinstance
(
size
,
Tensor
):
possible_to_infer_shape
=
False
if
shape_like
is
not
None
:
possible_to_infer_shape
=
False
if
possible_to_infer_shape
:
output
.
shape
=
inputs
.
shape
[:]
...
...
Dragon/python/dragon/updaters.py
View file @
3d2abe6
...
...
@@ -20,7 +20,7 @@ class BaseUpdater(object):
BaseUpdater is designed to preprocess the gradients.
"""
def
__init__
(
self
,
scale_gradient
=
1.0
,
clip_gradient
=
-
1.0
,
l2_decay
=
-
1.0
,
slot
=
''
):
l2_decay
=
-
1.0
,
slot
=
''
,
verbose
=
True
):
"""Construct a Updater to optimize the objectives.
Parameters
...
...
@@ -42,6 +42,7 @@ class BaseUpdater(object):
self
.
_tuples
=
[]
self
.
_type
=
None
self
.
_prefix
=
''
self
.
_verbose
=
verbose
def
append
(
self
,
pair
,
lr_mult
=
1.0
,
decay_mult
=
1.0
):
"""Append an ``UpdatePair`` into the updater.
...
...
@@ -117,7 +118,7 @@ class SGDUpdater(BaseUpdater):
'momentum'
:
momentum
},
**
self
.
_hyper_params
)
self
.
_type
=
'SGDUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
NesterovUpdater
(
BaseUpdater
):
...
...
@@ -140,7 +141,7 @@ class NesterovUpdater(BaseUpdater):
'momentum'
:
momentum
},
**
self
.
_hyper_params
)
self
.
_type
=
'NesterovUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
RMSPropUpdater
(
BaseUpdater
):
...
...
@@ -166,7 +167,7 @@ class RMSPropUpdater(BaseUpdater):
'eps'
:
eps
},
**
self
.
_hyper_params
)
self
.
_type
=
'RMSPropUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
AdamUpdater
(
BaseUpdater
):
...
...
@@ -195,4 +196,4 @@ class AdamUpdater(BaseUpdater):
'eps'
:
eps
},
**
self
.
_hyper_params
)
self
.
_type
=
'AdamUpdate'
self
.
echo
()
\ No newline at end of file
if
self
.
_verbose
:
self
.
echo
()
\ No newline at end of file
Dragon/python/dragon/vm/caffe/layers/vision.py
View file @
3d2abe6
...
...
@@ -264,9 +264,10 @@ class NNResizeLayer(Layer):
def
Setup
(
self
,
bottom
):
super
(
NNResizeLayer
,
self
)
.
Setup
(
bottom
)
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
if
isinstance
(
bottom
,
list
)
and
len
(
bottom
)
>
1
:
dshape
=
ops
.
Shape
(
bottom
[
1
])
self
.
_param
[
'dsize'
]
=
(
dshape
[
2
],
dshape
[
3
])
if
self
.
_param
[
'dsize'
]
is
None
:
if
len
(
bottom
)
!=
2
:
raise
ValueError
(
'The second bottom should be provided to determine the shape.'
)
self
.
_param
[
'shape_like'
]
=
bottom
[
1
]
return
ops
.
NNResize
(
input
,
**
self
.
_param
)
...
...
@@ -296,7 +297,8 @@ class BilinearResizeLayer(Layer):
def
Setup
(
self
,
bottom
):
super
(
BilinearResizeLayer
,
self
)
.
Setup
(
bottom
)
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
if
isinstance
(
bottom
,
list
)
and
len
(
bottom
)
>
1
:
dshape
=
ops
.
Shape
(
bottom
[
1
])
self
.
_param
[
'dsize'
]
=
(
dshape
[
2
],
dshape
[
3
])
if
self
.
_param
[
'dsize'
]
is
None
:
if
len
(
bottom
)
!=
2
:
raise
ValueError
(
'The second bottom should be provided to determine the shape.'
)
self
.
_param
[
'shape_like'
]
=
bottom
[
1
]
return
ops
.
BilinearResize
(
input
,
**
self
.
_param
)
\ No newline at end of file
Dragon/python/setup.py
View file @
3d2abe6
...
...
@@ -36,7 +36,7 @@ find_packages('dragon')
find_modules
()
setup
(
name
=
'dragon'
,
version
=
'0.2.1.
8
'
,
version
=
'0.2.1.
9
'
,
description
=
'Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework'
,
url
=
'https://github.com/neopenx/Dragon'
,
author
=
'Ting Pan'
,
...
...
Dragon/src/operators/activation/dropout_op.cc
View file @
3d2abe6
...
...
@@ -9,18 +9,18 @@ void DropoutOp<Context>::RunWithType() {
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
uint32_t
*
Mdata
=
mask
->
template
mutable_data
<
uint32_t
,
Context
>
();
float
scale
=
use_scale
?
1.0
/
(
1.0
-
prob
())
:
1.0
;
if
(
this
->
phase
()
==
"TRAIN"
)
{
kernel
::
Dropout
<
T
,
Context
>
(
output
(
0
)
->
count
(),
prob
,
scale
,
Xdata
,
kernel
::
Dropout
<
T
,
Context
>
(
output
(
0
)
->
count
(),
prob
(),
scale
,
Xdata
,
Mdata
,
Ydata
,
Ydata
,
&
ctx
());
}
else
if
(
this
->
phase
()
==
"TEST"
)
{
ctx
().
template
Copy
<
T
,
Context
,
Context
>
(
output
(
0
)
->
count
(),
Ydata
,
Xdata
);
if
(
scale
==
1.0
)
math
::
Scal
<
T
,
Context
>
(
output
(
0
)
->
count
(),
1.0
-
prob
,
Ydata
);
if
(
scale
==
1.0
)
math
::
Scal
<
T
,
Context
>
(
output
(
0
)
->
count
(),
1.0
-
prob
()
,
Ydata
);
}
}
...
...
@@ -46,10 +46,10 @@ void DropoutGradientOp<Context>::RunWithType() {
auto
*
dYdata
=
input
(
-
1
).
template
data
<
T
,
Context
>
();
auto
*
dXdata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Mdata
=
mask
->
template
data
<
uint32_t
,
Context
>
();
float
scale
=
use_scale
?
1.0
/
(
1.0
-
prob
())
:
1.0
;
if
(
this
->
phase
()
==
"TRAIN"
)
{
kernel
::
DropoutGrad
<
T
,
Context
>
(
output
(
0
)
->
count
(),
prob
,
prob
()
,
scale
,
dYdata
,
Mdata
,
...
...
@@ -84,4 +84,4 @@ class GetDropoutGradient final : public GradientMakerBase {
};
REGISTER_GRADIENT
(
Dropout
,
GetDropoutGradient
);
}
//
namepsace
dragon
\ No newline at end of file
}
// namepsace dragon
Dragon/src/operators/loss/softmax_cross_entropy_op.cc
View file @
3d2abe6
...
...
@@ -31,7 +31,7 @@ void SoftmaxCrossEntropyOp<Context>::RunWithType() {
else
if
(
normalization
==
"NONE"
)
normalizer
=
1
;
T
loss
=
math
::
ASum
<
T
,
Context
>
(
losses
.
count
(),
Ldata
);
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
1
));
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
C
PUC
ontext
>
();
Ydata
[
0
]
=
loss
/
normalizer
;
}
...
...
Dragon/src/operators/misc/initialize_op.cc
View file @
3d2abe6
...
...
@@ -12,23 +12,19 @@ void InitializeOp<Context>::RunWithType() {
template
<
class
Context
>
void
InitializeOp
<
Context
>::
RunOnDevice
()
{
vector
<
TIndex
>
dims
;
vector
<
TIndex
>
output_shape
;
if
(
shape_desc
.
empty
())
{
// determine the shape from dimensions
for
(
auto
&
dim_desc
:
dims_desc
)
{
Tensor
*
dim
=
ws
()
->
GetTensor
(
dim_desc
);
CHECK_EQ
(
dim
->
count
(),
1
)
<<
"
\n
The dimension should be a scalar."
;
CHECK
(
dim
->
IsType
<
int
>
())
<<
"
\n
The type of dimension should be int32."
;
dims
.
push_back
(
dim
->
template
data
<
int
,
CPUContext
>
()[
0
]);
}
int
ndims
=
(
int
)
std
::
max
(
dims_value
.
size
(),
dims_desc
.
size
());
for
(
int
i
=
0
;
i
<
ndims
;
i
++
)
output_shape
.
push_back
(
dims
(
i
));
}
else
{
// determine the shape from given shape
Tensor
*
shape
=
ws
()
->
GetTensor
(
shape_desc
);
CHECK
(
shape
->
IsType
<
int
>
())
<<
"
\n
The type of shape should be int32."
;
auto
*
shape_data
=
shape
->
template
data
<
int
,
CPUContext
>
();
for
(
int
i
=
0
;
i
<
shape
->
count
();
i
++
)
dims
.
push_back
(
shape_data
[
i
]);
for
(
int
i
=
0
;
i
<
shape
->
count
();
i
++
)
output_shape
.
push_back
(
shape_data
[
i
]);
}
output
(
0
)
->
Reshape
(
dims
);
output
(
0
)
->
Reshape
(
output_shape
);
RunWithType
<
float
>
();
}
...
...
Dragon/src/operators/ndarray/arange_op.cc
View file @
3d2abe6
...
...
@@ -4,39 +4,18 @@
namespace
dragon
{
template
<
class
Context
>
void
ArangeOp
<
Context
>::
Reshape
()
{
// parse start & step & stop
Tensor
*
t
=
ws
()
->
GetTensor
(
start_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The start should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of start should be int32."
;
start
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
t
=
ws
()
->
GetTensor
(
step_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The step should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of step should be int32."
;
step
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
!
stop_desc
.
empty
())
{
t
=
ws
()
->
GetTensor
(
stop_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The stop should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of stop should be int32."
;
stop
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
}
else
{
stop
=
start
;
start
=
0
;
}
count
=
(
stop
-
start
-
1
)
/
step
+
1
;
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
count
));
}
template
<
class
Context
>
template
<
typename
T
>
void
ArangeOp
<
Context
>::
RunWithType
()
{
TIndex
start_
=
start
(),
step_
=
step
(),
stop_
=
stop
(),
count
;
if
(
stop_
==
0
)
{
stop_
=
start_
;
start_
=
0
;
}
count
=
(
stop_
-
start_
-
1
)
/
step_
+
1
;
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
count
));
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
kernel
::
Arange
<
T
,
Context
>
(
count
,
start
,
step
,
Ydata
);
kernel
::
Arange
<
T
,
Context
>
(
count
,
start
_
,
step_
,
Ydata
);
}
template
<
class
Context
>
void
ArangeOp
<
Context
>::
RunOnDevice
()
{
Reshape
();
if
(
dtype
==
"FLOAT32"
)
RunWithType
<
float
>
();
else
if
(
dtype
==
"INT32"
)
RunWithType
<
int
>
();
else
LOG
(
FATAL
)
<<
"Unsupported data types"
;
...
...
Dragon/src/operators/ndarray/repeat_op.cc
View file @
3d2abe6
...
...
@@ -12,7 +12,7 @@ void RepeatOp<Context>::RunWithType() {
outer_dim
,
dim
,
inner_dim
,
reps
,
repeats
()
,
Xdata
,
Ydata
,
&
ctx
());
...
...
@@ -20,20 +20,16 @@ void RepeatOp<Context>::RunWithType() {
template
<
class
Context
>
void
RepeatOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
rep
s
));
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
rep
eats
()
));
}
else
{
outer_dim
=
input
(
0
).
count
(
0
,
axis
);
dim
=
input
(
0
).
dim
(
axis
);
inner_dim
=
input
(
0
).
count
(
axis
+
1
);
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
dims
[
axis
]
*=
rep
s
;
dims
[
axis
]
*=
rep
eats
()
;
output
(
0
)
->
Reshape
(
dims
);
}
...
...
@@ -55,7 +51,7 @@ void RepeatGradientOp<Context>::RunWithType() {
outer_dim
,
dim
,
inner_dim
,
reps
,
repeats
()
,
dYdata
,
dXdata
,
&
ctx
());
...
...
@@ -63,10 +59,6 @@ void RepeatGradientOp<Context>::RunWithType() {
template
<
class
Context
>
void
RepeatGradientOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
...
...
@@ -98,4 +90,4 @@ class GetRepeatGradient final : public GradientMakerBase {
};
REGISTER_GRADIENT
(
Repeat
,
GetRepeatGradient
);
}
// namespace dragon
}
//
namespace
dragon
\ No newline at end of file
Dragon/src/operators/ndarray/tile_op.cc
View file @
3d2abe6
...
...
@@ -25,15 +25,9 @@ void TileOp<Context>::TileRunWithType() {
template
<
class
Context
>
void
TileOp
<
Context
>::
RunOnDevice
()
{
// parse tasks from desc
CHECK_EQ
(
multiples_desc
.
size
(),
input
(
0
).
ndim
())
<<
"
\n
The num of dimensions of input is "
<<
input
(
0
).
ndim
()
<<
", but provided "
<<
multiples_desc
.
size
()
<<
" multiples."
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
for
(
int
i
=
0
;
i
<
multiples_desc
.
size
();
i
++
)
{
int
mult
=
ws
()
->
GetTensor
(
multiples_desc
[
i
])
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
mult
>
1
)
process_axes
.
push_back
({
mult
,
i
});
}
for
(
int
i
=
0
;
i
<
input
(
0
).
ndim
();
i
++
)
if
(
multiples
(
i
)
>
1
)
process_axes
.
push_back
({
multiples
(
i
),
i
});
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
// do nothing
...
...
@@ -90,15 +84,9 @@ void TileGradientOp<Context>::TileRunWithType() {
template
<
class
Context
>
void
TileGradientOp
<
Context
>::
RunOnDevice
()
{
// parse tasks from desc
CHECK_EQ
(
multiples_desc
.
size
(),
input
(
-
1
).
ndim
())
<<
"
\n
The num of dimensions of input is "
<<
input
(
-
1
).
ndim
()
<<
", but provided "
<<
multiples_desc
.
size
()
<<
" multiples."
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
for
(
int
i
=
0
;
i
<
multiples_desc
.
size
();
i
++
)
{
int
mult
=
ws
()
->
GetTensor
(
multiples_desc
[
i
])
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
mult
>
1
)
process_axes
.
push_back
({
mult
,
i
});
}
for
(
int
i
=
0
;
i
<
input
(
0
).
ndim
();
i
++
)
if
(
multiples
(
i
)
>
1
)
process_axes
.
push_back
({
multiples
(
i
),
i
});
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
std
::
reverse
(
process_axes
.
begin
(),
process_axes
.
end
());
...
...
Dragon/src/operators/vision/bilinear_resize_op.cc
View file @
3d2abe6
...
...
@@ -8,19 +8,19 @@ namespace dragon {
template
<
class
Context
>
template
<
typename
T
>
void
BilinearResizeOp
<
Context
>::
RunWithType
()
{
if
(
data_format
==
"NCHW"
)
{
n
=
dims
[
0
]
;
c
=
dims
[
1
]
;
n
=
input
(
0
).
dim
(
0
)
;
c
=
input
(
0
).
dim
(
1
)
;
h
=
input
(
0
).
dim
(
2
);
w
=
input
(
0
).
dim
(
3
);
out_h
=
dims
[
2
]
;
out_w
=
dims
[
3
]
;
out_h
=
output
(
0
)
->
dim
(
2
)
;
out_w
=
output
(
0
)
->
dim
(
3
)
;
}
else
if
(
data_format
==
"NHWC"
)
{
n
=
dims
[
0
]
;
n
=
input
(
0
).
dim
(
0
)
;
h
=
input
(
0
).
dim
(
1
);
w
=
input
(
0
).
dim
(
2
);
out_h
=
dims
[
1
]
;
out_
w
=
dims
[
2
]
;
c
=
dims
[
3
]
;
c
=
input
(
0
).
dim
(
3
)
;
out_
h
=
output
(
0
)
->
dim
(
1
)
;
out_w
=
output
(
0
)
->
dim
(
2
)
;
}
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
...
...
@@ -33,14 +33,14 @@ void BilinearResizeOp<Context>::RunWithType() {
template
<
class
Context
>
void
BilinearResizeOp
<
Context
>::
RunOnDevice
()
{
dims
=
input
(
0
).
dims
();
if
(
dsize_desc
.
size
()
>
0
)
{
CHECK_EQ
(
dsize_desc
.
size
(),
2
)
<<
"
\n
The dsize should be a scalar with 2 elements."
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
Tensor
*
dsize
=
ws
()
->
GetTensor
(
dsize_desc
[
i
]);
CHECK
(
dsize
->
IsType
<
int
>
())
<<
"
\n
The type of dsize should be int32."
;
dims
[
spatial_axis
+
i
]
=
dsize
->
template
data
<
int
,
CPUContext
>
()[
0
];
}
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
if
(
dsize_desc
.
size
()
>
0
||
dsize_value
.
size
()
>
0
)
{
for
(
int
i
=
0
;
i
<
2
;
i
++
)
dims
[
spatial_axis
+
i
]
=
dsize
(
i
);
}
else
if
(
!
shape_like_desc
.
empty
())
{
Tensor
*
shape_like_tensor
=
ws
()
->
GetTensor
(
shape_like_desc
)
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
dims
[
spatial_axis
+
i
]
=
shape_like_tensor
->
dim
(
spatial_axis
+
i
);
}
else
{
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
<<
"
\n
The fx and fy should be set."
;
...
...
Dragon/src/operators/vision/conv_op_base.cc
View file @
3d2abe6
...
...
@@ -29,14 +29,13 @@ void ConvOpBase<Context>::ComputeOutputShape() {
const
TIndex
output_dim
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
2
*
pad
[
i
];
output_shape
.
push_back
(
output_dim
);
}
else
{
CHECK
(
output_dims_desc
.
size
()
>
0
)
CHECK
(
output_dims_desc
.
size
()
>
0
||
output_dims_value
.
size
()
>
0
)
<<
"
\n
The output shape must be specified if using SAME padding algorithm."
;
CHECK_EQ
((
int
)
output_dims_desc
.
size
(),
num_spatial_axes
+
2
)
int
given_ndim
=
(
int
)
std
::
max
(
output_dims_desc
.
size
(),
output_dims_value
.
size
());
CHECK_EQ
(
given_ndim
,
num_spatial_axes
+
2
)
<<
"
\n
The len of output shape should be "
<<
num_spatial_axes
+
2
<<
", but got "
<<
output_dims_desc
.
size
()
<<
"."
;
Tensor
*
t
=
ws
()
->
GetTensor
(
output_dims_desc
[
spatial_axis
+
i
]);
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of output shape should be int32."
;
TIndex
output_dim
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
<<
", but got "
<<
output_dims_desc
.
size
()
<<
"."
;
TIndex
output_dim
=
output_dims
(
spatial_axis
+
i
);
TIndex
padding_needed
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
output_dim
;
CHECK_GE
(
padding_needed
,
0
)
<<
"
\n
The output shape is incorrect."
...
...
Dragon/src/operators/vision/nn_resize_op.cc
View file @
3d2abe6
...
...
@@ -34,13 +34,13 @@ void NNResizeOp<Context>::RunWithType() {
template
<
class
Context
>
void
NNResizeOp
<
Context
>::
RunOnDevice
()
{
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
if
(
dsize_desc
.
size
()
>
0
)
{
CHECK_EQ
(
dsize_desc
.
size
(),
2
)
<<
"
\n
The dsize should be a scalar with 2 elements."
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
Tensor
*
dsize
=
ws
()
->
GetTensor
(
dsize_desc
[
i
]);
CHECK
(
dsize
->
IsType
<
int
>
())
<<
"
\n
The type of dsize should be int32."
;
dims
[
spatial_axis
+
i
]
=
dsize
->
template
data
<
int
,
CPUContext
>
()[
0
];
}
if
(
dsize_desc
.
size
()
>
0
||
dsize_value
.
size
()
>
0
)
{
for
(
int
i
=
0
;
i
<
2
;
i
++
)
dims
[
spatial_axis
+
i
]
=
dsize
(
i
);
}
else
if
(
!
shape_like_desc
.
empty
())
{
Tensor
*
shape_like_tensor
=
ws
()
->
GetTensor
(
shape_like_desc
)
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
dims
[
spatial_axis
+
i
]
=
shape_like_tensor
->
dim
(
spatial_axis
+
i
);
}
else
{
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
<<
"
\n
The fx and fy should be set."
;
...
...
examples/GA3C/ProcessAgent.py
View file @
3d2abe6
...
...
@@ -84,6 +84,8 @@ class ProcessAgent(Process):
continue
prediction
,
value
=
self
.
predict
(
self
.
env
.
current_state
)
action
=
self
.
select_action
(
prediction
)
reward
,
done
=
self
.
env
.
step
(
action
)
reward_sum
+=
reward
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment