Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
Dragon
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 3d2abe69
authored
Mar 06, 2018
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Mix Static/Dynamic Arguments
1 parent
04fdadb0
Show whitespace changes
Inline
Side-by-side
Showing
28 changed files
with
274 additions
and
189 deletions
Dragon/include/core/operator.h
Dragon/include/operators/activation/dropout_op.h
Dragon/include/operators/misc/initialize_op.h
Dragon/include/operators/ndarray/arange_op.h
Dragon/include/operators/ndarray/repeat_op.h
Dragon/include/operators/ndarray/tile_op.h
Dragon/include/operators/vision/bilinear_resize_op.h
Dragon/include/operators/vision/conv_op_base.h
Dragon/include/operators/vision/nn_resize_op.h
Dragon/python/dragon/__init__.py
Dragon/python/dragon/operators/__init__.py
Dragon/python/dragon/operators/activation.py
Dragon/python/dragon/operators/initializer.py
Dragon/python/dragon/operators/ndarray.py
Dragon/python/dragon/operators/vision.py
Dragon/python/dragon/updaters.py
Dragon/python/dragon/vm/caffe/layers/vision.py
Dragon/python/setup.py
Dragon/src/operators/activation/dropout_op.cc
Dragon/src/operators/loss/softmax_cross_entropy_op.cc
Dragon/src/operators/misc/initialize_op.cc
Dragon/src/operators/ndarray/arange_op.cc
Dragon/src/operators/ndarray/repeat_op.cc
Dragon/src/operators/ndarray/tile_op.cc
Dragon/src/operators/vision/bilinear_resize_op.cc
Dragon/src/operators/vision/conv_op_base.cc
Dragon/src/operators/vision/nn_resize_op.cc
examples/GA3C/ProcessAgent.py
Dragon/include/core/operator.h
View file @
3d2abe6
...
@@ -167,6 +167,53 @@ DECLARE_REGISTRY(CUDNNOperatorRegistry, OperatorBase, const OperatorDef&, Worksp
...
@@ -167,6 +167,53 @@ DECLARE_REGISTRY(CUDNNOperatorRegistry, OperatorBase, const OperatorDef&, Worksp
} \
} \
}
}
#define DECLARE_ARGUMENT_WITH_DESC(type, argument) \
type argument##_value; \
string argument##_desc; \
type argument()
#define DECLARE_ARGUMENTS_WITH_DESC(type, argument) \
vector<type> argument##_value; \
vector<string> argument##_desc; \
type argument(int idx)
#define GET_ARGUMENT_WITH_DESC(type, argument, default_value) \
argument##_value = OperatorBase::GetSingleArg<type>(#argument, default_value); \
argument##_desc = OperatorBase::GetSingleArg<string>(string(#argument) + "_desc", "")
#define GET_ARGUMENTS_WITH_DESC(type, argument) \
argument##_value = OperatorBase::GetRepeatedArg<type>(#argument); \
argument##_desc = OperatorBase::GetRepeatedArg<string>(string(#argument) + "_desc")
#define DEFINE_ARGUMENT_WITH_DESC(type, classname, argument) \
template <class Context> \
type classname<Context>::argument() { \
if (argument##_desc.empty()) return argument##_value; \
Tensor* argument##_tensor = ws()->GetTensor(argument##_desc); \
CHECK(argument##_tensor->IsType<type>()) \
<< "\nThe type of " << #argument << " should be " << #type << "."; \
CHECK_EQ(argument##_tensor->count(), 1) \
<< "\nThe argument of " << #argument << " should be a scalar"; \
return argument##_tensor->template data<type, CPUContext>()[0]; \
}
#define DEFINE_ARGUMENTS_WITH_DESC(type, classname, argument) \
template <class Context> \
type classname<Context>::argument(int idx) { \
if (argument##_desc.empty()) { \
CHECK_LT(idx, argument##_value.size()); \
return argument##_value[idx]; \
} \
CHECK_LT(idx, argument##_desc.size()); \
Tensor* argument##_tensor = ws()->GetTensor(argument##_desc[idx]); \
CHECK(argument##_tensor->IsType<type>()) \
<< "\nThe type of " << #argument << " should be " << #type; \
CHECK_EQ(argument##_tensor->count(), 1) \
<< "\nThe argument of " << #argument << " at pos(" \
<< idx << ") should be a scalar."; \
return argument##_tensor->template data<type, CPUContext>()[0]; \
}
#define DISABLE_SHARE_GRADIENT \
#define DISABLE_SHARE_GRADIENT \
this->allow_share_grads_ = false
this->allow_share_grads_ = false
...
...
Dragon/include/operators/activation/dropout_op.h
View file @
3d2abe6
...
@@ -17,19 +17,16 @@ class DropoutOp final : public Operator<Context> {
...
@@ -17,19 +17,16 @@ class DropoutOp final : public Operator<Context> {
public
:
public
:
DropoutOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
DropoutOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
prob
(
OperatorBase
::
GetSingleArg
<
float
>
(
"prob"
,
0
.
5
))
{
use_scale
(
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
))
{
bool
use_scale
=
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
);
GET_ARGUMENT_WITH_DESC
(
float
,
prob
,
0
.
5
);
threshold
=
static_cast
<
unsigned
int
>
(
UINT_MAX
*
prob
);
if
(
use_scale
)
scale
=
1
.
0
/
(
1
.
0
-
prob
);
else
scale
=
1
.
0
;
}
}
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
float
prob
,
scale
;
DECLARE_ARGUMENT_WITH_DESC
(
float
,
prob
)
;
unsigned
int
threshold
;
bool
use_scale
;
Tensor
*
mask
;
Tensor
*
mask
;
};
};
...
@@ -38,11 +35,8 @@ class DropoutGradientOp final : public Operator<Context> {
...
@@ -38,11 +35,8 @@ class DropoutGradientOp final : public Operator<Context> {
public
:
public
:
DropoutGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
DropoutGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
prob
(
OperatorBase
::
GetSingleArg
<
float
>
(
"prob"
,
0
.
5
))
{
use_scale
(
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
))
{
bool
use_scale
=
OperatorBase
::
GetSingleArg
<
bool
>
(
"scale"
,
true
);
GET_ARGUMENT_WITH_DESC
(
float
,
prob
,
0
.
5
);
threshold
=
static_cast
<
unsigned
int
>
(
UINT_MAX
*
prob
);
if
(
use_scale
)
scale
=
1
.
0
/
(
1
.
0
-
prob
);
else
scale
=
1
.
0
;
DISABLE_SHARE_GRADIENT
;
DISABLE_SHARE_GRADIENT
;
}
}
...
@@ -50,11 +44,14 @@ class DropoutGradientOp final : public Operator<Context> {
...
@@ -50,11 +44,14 @@ class DropoutGradientOp final : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
float
prob
,
scale
;
DECLARE_ARGUMENT_WITH_DESC
(
float
,
prob
)
;
unsigned
int
threshold
;
bool
use_scale
;
Tensor
*
mask
;
Tensor
*
mask
;
};
};
DEFINE_ARGUMENT_WITH_DESC
(
float
,
DropoutOp
,
prob
);
DEFINE_ARGUMENT_WITH_DESC
(
float
,
DropoutGradientOp
,
prob
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_ACTIVATION_DROPOUT_OP_H_
#endif // DRAGON_OPERATORS_ACTIVATION_DROPOUT_OP_H_
\ No newline at end of file
Dragon/include/operators/misc/initialize_op.h
View file @
3d2abe6
...
@@ -17,14 +17,15 @@ class InitializeOp: public Operator<Context> {
...
@@ -17,14 +17,15 @@ class InitializeOp: public Operator<Context> {
public
:
public
:
InitializeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
InitializeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
dims_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dims"
)),
shape_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape"
,
""
))
{
shape_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape"
,
""
))
{}
GET_ARGUMENTS_WITH_DESC
(
int
,
dims
);
}
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
vector
<
string
>
dims_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dims
)
;
string
shape_desc
;
string
shape_desc
;
TensorFiller
filler
;
TensorFiller
filler
;
};
};
...
@@ -116,6 +117,8 @@ public:
...
@@ -116,6 +117,8 @@ public:
}
}
};
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
InitializeOp
,
dims
);
}
// namespace
}
// namespace
#endif // DRAGON_OPERATORS_MISC_INITIALIZE_OP_H_
#endif // DRAGON_OPERATORS_MISC_INITIALIZE_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/arange_op.h
View file @
3d2abe6
...
@@ -16,21 +16,26 @@ class ArangeOp final : public Operator<Context> {
...
@@ -16,21 +16,26 @@ class ArangeOp final : public Operator<Context> {
public
:
public
:
ArangeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
ArangeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
start_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"start"
,
""
)),
dtype
(
OperatorBase
::
GetSingleArg
<
string
>
(
"dtype"
,
"FLOAT32"
))
{
stop_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"stop"
,
""
)),
GET_ARGUMENT_WITH_DESC
(
int
,
start
,
0
);
step_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"step"
,
""
)),
GET_ARGUMENT_WITH_DESC
(
int
,
stop
,
0
);
dtype
(
OperatorBase
::
GetSingleArg
<
string
>
(
"dtype"
,
"FLOAT32"
))
{}
GET_ARGUMENT_WITH_DESC
(
int
,
step
,
1
);
}
void
Reshape
();
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
string
start_desc
,
stop_desc
,
step_desc
,
dtype
;
DECLARE_ARGUMENT_WITH_DESC
(
int
,
start
);
TIndex
start
,
stop
,
step
,
count
;
DECLARE_ARGUMENT_WITH_DESC
(
int
,
stop
);
DECLARE_ARGUMENT_WITH_DESC
(
int
,
step
);
string
dtype
;
};
};
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
start
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
stop
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
ArangeOp
,
step
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_ARANGE_OP_H_
#endif // DRAGON_OPERATORS_NDARRAY_ARANGE_OP_H_
\ No newline at end of file
Dragon/include/operators/ndarray/repeat_op.h
View file @
3d2abe6
...
@@ -16,15 +16,16 @@ class RepeatOp : public Operator<Context> {
...
@@ -16,15 +16,16 @@ class RepeatOp : public Operator<Context> {
public
:
public
:
RepeatOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
RepeatOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
))
{
repeats_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
GET_ARGUMENT_WITH_DESC
(
int
,
repeats
,
1
);
}
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
DECLARE_ARGUMENT_WITH_DESC
(
int
,
repeats
)
;
string
repeats_desc
;
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
;
};
};
template
<
class
Context
>
template
<
class
Context
>
...
@@ -32,17 +33,21 @@ class RepeatGradientOp : public Operator<Context> {
...
@@ -32,17 +33,21 @@ class RepeatGradientOp : public Operator<Context> {
public
:
public
:
RepeatGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
RepeatGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
))
{
repeats_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
GET_ARGUMENT_WITH_DESC
(
int
,
repeats
,
1
);
}
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
DECLARE_ARGUMENT_WITH_DESC
(
int
,
repeats
);
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
string
repeats_desc
;
};
};
DEFINE_ARGUMENT_WITH_DESC
(
int
,
RepeatOp
,
repeats
);
DEFINE_ARGUMENT_WITH_DESC
(
int
,
RepeatGradientOp
,
repeats
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_REPEAT_OP_H_
#endif // DRAGON_OPERATORS_NDARRAY_REPEAT_OP_H_
Dragon/include/operators/ndarray/tile_op.h
View file @
3d2abe6
...
@@ -15,14 +15,15 @@ template <class Context>
...
@@ -15,14 +15,15 @@ template <class Context>
class
TileOp
:
public
Operator
<
Context
>
{
class
TileOp
:
public
Operator
<
Context
>
{
public
:
public
:
TileOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
TileOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
)
{
multiples_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"multiples"
))
{}
GET_ARGUMENTS_WITH_DESC
(
int
,
multiples
);
}
void
RunOnDevice
()
override
;
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
TileRunWithType
();
template
<
typename
T
>
void
TileRunWithType
();
protected
:
protected
:
vector
<
string
>
multiples_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
multiples
)
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
Tensor
*
dest
,
*
source
;
Tensor
*
dest
,
*
source
;
};
};
...
@@ -31,8 +32,8 @@ template <class Context>
...
@@ -31,8 +32,8 @@ template <class Context>
class
TileGradientOp
:
public
Operator
<
Context
>
{
class
TileGradientOp
:
public
Operator
<
Context
>
{
public
:
public
:
TileGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
TileGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
)
,
:
Operator
<
Context
>
(
op_def
,
ws
)
{
multiples_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"multiples"
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
multiples
);
DISABLE_SHARE_GRADIENT
;
DISABLE_SHARE_GRADIENT
;
}
}
...
@@ -40,11 +41,14 @@ class TileGradientOp : public Operator<Context> {
...
@@ -40,11 +41,14 @@ class TileGradientOp : public Operator<Context> {
template
<
typename
T
>
void
TileRunWithType
();
template
<
typename
T
>
void
TileRunWithType
();
protected
:
protected
:
vector
<
string
>
multiples_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
multiples
)
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
TIndex
axis
,
multiple
,
outer_dim
,
ex_inner_dim
;
Tensor
*
dest
,
*
source
;
Tensor
*
dest
,
*
source
;
};
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
TileOp
,
multiples
);
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
TileGradientOp
,
multiples
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_TILE_OP_H_
#endif // DRAGON_OPERATORS_NDARRAY_TILE_OP_H_
\ No newline at end of file
Dragon/include/operators/vision/bilinear_resize_op.h
View file @
3d2abe6
...
@@ -16,10 +16,11 @@ class BilinearResizeOp : public Operator<Context> {
...
@@ -16,10 +16,11 @@ class BilinearResizeOp : public Operator<Context> {
public
:
public
:
BilinearResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
BilinearResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
dsize_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dsize"
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
shape_like_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape_like"
,
""
)),
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
dsize
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
@@ -28,11 +29,10 @@ class BilinearResizeOp : public Operator<Context> {
...
@@ -28,11 +29,10 @@ class BilinearResizeOp : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
vector
<
string
>
dsize_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dsize
)
;
float
fy
,
fx
;
float
fy
,
fx
;
string
data_format
;
string
data_format
,
shape_like_desc
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
vector
<
TIndex
>
dims
;
};
};
template
<
class
Context
>
template
<
class
Context
>
...
@@ -50,6 +50,8 @@ class BilinearResizeGradientOp : public Operator<Context> {
...
@@ -50,6 +50,8 @@ class BilinearResizeGradientOp : public Operator<Context> {
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
};
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
BilinearResizeOp
,
dsize
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_BILINEAR_RESIZE_OP_H_
#endif // DRAGON_OPERATORS_VISION_BILINEAR_RESIZE_OP_H_
\ No newline at end of file
Dragon/include/operators/vision/conv_op_base.h
View file @
3d2abe6
...
@@ -21,8 +21,9 @@ class ConvOpBase : public Operator<Context> {
...
@@ -21,8 +21,9 @@ class ConvOpBase : public Operator<Context> {
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
)),
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
)),
padding
(
OperatorBase
::
GetSingleArg
<
string
>
(
"padding"
,
"VALID"
)),
padding
(
OperatorBase
::
GetSingleArg
<
string
>
(
"padding"
,
"VALID"
)),
num_output
(
OperatorBase
::
GetSingleArg
<
int
>
(
"num_output"
,
1
)),
num_output
(
OperatorBase
::
GetSingleArg
<
int
>
(
"num_output"
,
1
)),
group
(
OperatorBase
::
GetSingleArg
<
int
>
(
"group"
,
1
)),
group
(
OperatorBase
::
GetSingleArg
<
int
>
(
"group"
,
1
))
{
output_dims_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"output_shape"
))
{
output_dims_value
=
OperatorBase
::
GetRepeatedArg
<
int
>
(
"output_shape"
);
output_dims_desc
=
OperatorBase
::
GetRepeatedArg
<
string
>
(
"output_shape_desc"
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
@@ -41,7 +42,7 @@ class ConvOpBase : public Operator<Context> {
...
@@ -41,7 +42,7 @@ class ConvOpBase : public Operator<Context> {
TIndex
conv_in_channels
,
conv_out_channels
;
TIndex
conv_in_channels
,
conv_out_channels
;
TIndex
conv_out_spatial_dim
,
kernel_dim
;
TIndex
conv_out_spatial_dim
,
kernel_dim
;
TIndex
col_offset
,
output_offset
,
weight_offset
,
x_offset
,
y_offset
;
TIndex
col_offset
,
output_offset
,
weight_offset
,
x_offset
,
y_offset
;
vector
<
string
>
output_dims_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
output_dims
)
;
bool
is_1x1
;
bool
is_1x1
;
void
Setup
();
void
Setup
();
...
@@ -87,6 +88,8 @@ class ConvOpBase : public Operator<Context> {
...
@@ -87,6 +88,8 @@ class ConvOpBase : public Operator<Context> {
}
}
};
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
ConvOpBase
,
output_dims
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_CONV_OP_BASE_H_
#endif // DRAGON_OPERATORS_VISION_CONV_OP_BASE_H_
\ No newline at end of file
Dragon/include/operators/vision/nn_resize_op.h
View file @
3d2abe6
...
@@ -16,10 +16,11 @@ class NNResizeOp : public Operator<Context> {
...
@@ -16,10 +16,11 @@ class NNResizeOp : public Operator<Context> {
public
:
public
:
NNResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
NNResizeOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
:
Operator
<
Context
>
(
op_def
,
ws
),
dsize_desc
(
OperatorBase
::
GetRepeatedArg
<
string
>
(
"dsize"
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fy
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fy"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
fx
(
OperatorBase
::
GetSingleArg
<
float
>
(
"fx"
,
-
1
.
0
)),
shape_like_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"shape_like"
,
""
)),
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
data_format
(
OperatorBase
::
GetSingleArg
<
string
>
(
"data_format"
,
"NCHW"
))
{
GET_ARGUMENTS_WITH_DESC
(
int
,
dsize
);
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
if
(
data_format
==
"NCHW"
)
spatial_axis
=
2
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
if
(
data_format
==
"NHWC"
)
spatial_axis
=
1
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
else
LOG
(
FATAL
)
<<
"Unknown data format: "
<<
data_format
;
...
@@ -29,9 +30,9 @@ class NNResizeOp : public Operator<Context> {
...
@@ -29,9 +30,9 @@ class NNResizeOp : public Operator<Context> {
template
<
typename
T
>
void
RunWithType
();
template
<
typename
T
>
void
RunWithType
();
protected
:
protected
:
vector
<
string
>
dsize_desc
;
DECLARE_ARGUMENTS_WITH_DESC
(
int
,
dsize
)
;
float
fy
,
fx
;
float
fy
,
fx
;
string
data_format
;
string
data_format
,
shape_like_desc
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
,
spatial_axis
;
};
};
...
@@ -50,6 +51,8 @@ class NNResizeGradientOp : public Operator<Context> {
...
@@ -50,6 +51,8 @@ class NNResizeGradientOp : public Operator<Context> {
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
TIndex
n
,
c
,
h
,
w
,
out_h
,
out_w
;
};
};
DEFINE_ARGUMENTS_WITH_DESC
(
int
,
NNResizeOp
,
dsize
);
}
// namespace dragon
}
// namespace dragon
#endif // DRAGON_OPERATORS_VISION_NN_RESIZE_OP_H_
#endif // DRAGON_OPERATORS_VISION_NN_RESIZE_OP_H_
\ No newline at end of file
Dragon/python/dragon/__init__.py
View file @
3d2abe6
...
@@ -4,6 +4,10 @@
...
@@ -4,6 +4,10 @@
# Written by Ting Pan
# Written by Ting Pan
# --------------------------------------------------------
# --------------------------------------------------------
# config
from
dragon.config
import
*
import
dragon.config
as
config
# core
# core
from
dragon.core.tensor
import
Tensor
from
dragon.core.tensor
import
Tensor
import
dragon.core.workspace
as
workspace
import
dragon.core.workspace
as
workspace
...
...
Dragon/python/dragon/operators/__init__.py
View file @
3d2abe6
...
@@ -37,3 +37,37 @@ def ParseArguments(locals):
...
@@ -37,3 +37,37 @@ def ParseArguments(locals):
__all__
=
locals
__all__
=
locals
kwargs
=
__all__
[
'kwargs'
];
del
__all__
[
'kwargs'
]
kwargs
=
__all__
[
'kwargs'
];
del
__all__
[
'kwargs'
]
return
dict
(
__all__
,
**
kwargs
)
return
dict
(
__all__
,
**
kwargs
)
def
AddArgumentWithDesc
(
arguments
,
property
,
name
,
as_target
=
True
):
if
isinstance
(
property
,
Tensor
):
if
as_target
:
if
not
'extra_inputs'
in
arguments
:
arguments
[
'extra_inputs'
]
=
[]
arguments
[
'extra_inputs'
]
.
extend
([
property
])
arguments
[
name
]
=
None
arguments
[
name
+
'_desc'
]
=
property
.
name
return
arguments
def
AddArgumentsWithDesc
(
arguments
,
properties
,
name
,
type
,
as_target
=
True
):
if
not
isinstance
(
properties
,
(
list
,
tuple
)):
properties
=
[
properties
]
# check whether to use desc
tensor_in_properties
=
False
for
property
in
properties
:
if
isinstance
(
property
,
Tensor
):
tensor_in_properties
=
True
if
tensor_in_properties
:
properties_t
=
[]
for
property
in
properties
:
if
isinstance
(
property
,
Tensor
):
if
as_target
:
if
not
'extra_inputs'
in
arguments
:
arguments
[
'extra_inputs'
]
=
[]
arguments
[
'extra_inputs'
]
.
extend
([
property
])
properties_t
.
append
(
property
.
name
)
else
:
properties_t
.
append
(
Tensor
.
Convert
(
property
,
dtype
=
type
)
.
name
)
arguments
[
name
]
=
None
arguments
[
name
+
'_desc'
]
=
properties_t
return
arguments
\ No newline at end of file
Dragon/python/dragon/operators/activation.py
View file @
3d2abe6
...
@@ -201,7 +201,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
...
@@ -201,7 +201,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
----------
----------
inputs : Tensor
inputs : Tensor
The input tensor.
The input tensor.
prob : float
prob : float
or Tensor
The prob of dropping. Default is ``0.5``.
The prob of dropping. Default is ``0.5``.
scale : boolean
scale : boolean
Whether to scale the output during training.
Whether to scale the output during training.
...
@@ -214,6 +214,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
...
@@ -214,6 +214,7 @@ def Dropout(inputs, prob=0.5, scale=True, **kwargs):
"""
"""
CheckInputs
(
inputs
,
1
)
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
=
ParseArguments
(
locals
())
arguments
=
AddArgumentWithDesc
(
arguments
,
prob
,
'prob'
,
as_target
=
False
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Dropout'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Dropout'
,
**
arguments
)
...
...
Dragon/python/dragon/operators/initializer.py
View file @
3d2abe6
...
@@ -16,9 +16,9 @@ def _wrap_input_shape(arguments, shape):
...
@@ -16,9 +16,9 @@ def _wrap_input_shape(arguments, shape):
arguments
[
'extra_inputs'
]
=
shape
arguments
[
'extra_inputs'
]
=
shape
arguments
[
'shape'
]
=
shape
.
name
arguments
[
'shape'
]
=
shape
.
name
elif
isinstance
(
shape
,
(
list
,
tuple
)):
elif
isinstance
(
shape
,
(
list
,
tuple
)):
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
dim
,
dtype
=
'int32'
)
for
dim
in
shape
]
arguments
[
'dims'
]
=
shape
arguments
[
'dims'
]
=
[
dim
.
name
for
dim
in
arguments
[
'extra_inputs'
]]
arguments
[
'shape'
]
=
None
arguments
[
'shape'
]
=
None
AddArgumentsWithDesc
(
arguments
,
shape
,
'dims'
,
'int32'
,
as_target
=
True
)
else
:
else
:
raise
TypeError
(
'Unsupported type of shape: {}'
.
format
(
type
(
shape
)))
raise
TypeError
(
'Unsupported type of shape: {}'
.
format
(
type
(
shape
)))
return
arguments
return
arguments
...
...
Dragon/python/dragon/operators/ndarray.py
View file @
3d2abe6
...
@@ -455,8 +455,7 @@ def Repeat(inputs, axis=-1, repeats=1, **kwargs):
...
@@ -455,8 +455,7 @@ def Repeat(inputs, axis=-1, repeats=1, **kwargs):
"""
"""
CheckInputs
(
inputs
,
1
)
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
repeats
,
dtype
=
'int32'
)]
arguments
=
AddArgumentWithDesc
(
arguments
,
repeats
,
'repeats'
,
as_target
=
True
)
arguments
[
'repeats'
]
=
arguments
[
'extra_inputs'
][
0
]
.
name
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Repeat'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Repeat'
,
**
arguments
)
...
@@ -492,8 +491,7 @@ def Tile(inputs, multiples, **kwargs):
...
@@ -492,8 +491,7 @@ def Tile(inputs, multiples, **kwargs):
"""
"""
CheckInputs
(
inputs
,
1
)
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
multiple
,
dtype
=
'int32'
)
for
multiple
in
multiples
]
arguments
=
AddArgumentsWithDesc
(
arguments
,
multiples
,
'multiples'
,
'int32'
,
as_target
=
True
)
arguments
[
'multiples'
]
=
[
multiple
.
name
for
multiple
in
arguments
[
'extra_inputs'
]]
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Tile'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Tile'
,
**
arguments
)
...
@@ -779,14 +777,11 @@ def Arange(start, stop=None, step=1, dtype='FLOAT32', **kwargs):
...
@@ -779,14 +777,11 @@ def Arange(start, stop=None, step=1, dtype='FLOAT32', **kwargs):
"""
"""
arguments
=
ParseArguments
(
locals
())
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
start
,
dtype
=
'int32'
),
Tensor
.
Convert
(
step
,
dtype
=
'int32'
)]
arguments
[
'start'
]
=
arguments
[
'extra_inputs'
][
0
]
.
name
arguments
[
'step'
]
=
arguments
[
'extra_inputs'
][
1
]
.
name
if
stop
is
not
None
:
arguments
[
'extra_inputs'
]
.
append
(
Tensor
.
Convert
(
stop
,
dtype
=
'int32'
))
arguments
[
'stop'
]
=
arguments
[
'extra_inputs'
][
-
1
]
.
name
arguments
[
'dtype'
]
=
arguments
[
'dtype'
]
.
upper
()
arguments
[
'dtype'
]
=
arguments
[
'dtype'
]
.
upper
()
arguments
=
AddArgumentWithDesc
(
arguments
,
start
,
'start'
,
as_target
=
True
)
arguments
=
AddArgumentWithDesc
(
arguments
,
step
,
'step'
,
as_target
=
True
)
if
stop
is
not
None
:
arguments
=
AddArgumentWithDesc
(
arguments
,
stop
,
'stop'
,
as_target
=
True
)
output
=
Tensor
.
CreateOperator
([],
nout
=
1
,
op_type
=
'Arange'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
([],
nout
=
1
,
op_type
=
'Arange'
,
**
arguments
)
...
...
Dragon/python/dragon/operators/vision.py
View file @
3d2abe6
...
@@ -139,7 +139,7 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
...
@@ -139,7 +139,7 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
The dilation multiple(s) of deconvolution. Default is ``1``.
The dilation multiple(s) of deconvolution. Default is ``1``.
group : int
group : int
The group size of deconvolution. Default is ``1``.
The group size of deconvolution. Default is ``1``.
output_shape : list o
f int o
r None
output_shape : list or None
The deterministic output shape for **SAME** padding.
The deterministic output shape for **SAME** padding.
padding : str
padding : str
The padding algorithm. ``VALID`` or ``SAME``.
The padding algorithm. ``VALID`` or ``SAME``.
...
@@ -170,12 +170,8 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
...
@@ -170,12 +170,8 @@ def Conv2dTranspose(inputs, num_output, kernel_size,
if
data_format
not
in
(
'NCHW'
,
'NHWC'
):
if
data_format
not
in
(
'NCHW'
,
'NHWC'
):
raise
ValueError
(
'Unsupported data format: {}'
.
format
(
data_format
))
raise
ValueError
(
'Unsupported data format: {}'
.
format
(
data_format
))
arguments
[
'output_shape'
]
=
None
if
output_shape
is
not
None
:
if
output_shape
is
not
None
:
if
not
isinstance
(
output_shape
,
list
):
AddArgumentsWithDesc
(
arguments
,
output_shape
,
'output_shape'
,
'int32'
,
as_target
=
True
)
raise
TypeError
(
'The output shape should be a list.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
dim
,
dtype
=
'int32'
)
for
dim
in
output_shape
]
arguments
[
'output_shape'
]
=
[
dim
.
name
for
dim
in
arguments
[
'extra_inputs'
]]
if
not
isinstance
(
arguments
[
'kernel_size'
],
list
):
if
not
isinstance
(
arguments
[
'kernel_size'
],
list
):
arguments
[
'kernel_size'
]
=
[
arguments
[
'kernel_size'
]]
arguments
[
'kernel_size'
]
=
[
arguments
[
'kernel_size'
]]
...
@@ -400,7 +396,8 @@ def LRN(inputs, local_size=5, alpha=0.0001, beta=0.75, k=2.0,
...
@@ -400,7 +396,8 @@ def LRN(inputs, local_size=5, alpha=0.0001, beta=0.75, k=2.0,
return
output
return
output
def
NNResize
(
inputs
,
dsize
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
def
NNResize
(
inputs
,
dsize
,
shape_like
=
None
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
"""Resize the image with Nearest-Neighbor method.
"""Resize the image with Nearest-Neighbor method.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
...
@@ -411,6 +408,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
...
@@ -411,6 +408,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
The input tensor.
The input tensor.
dsize : tuple, list, Tensor or None
dsize : tuple, list, Tensor or None
The output size, formats as (h, w).
The output size, formats as (h, w).
shape_like : Tensor or None
The tensor for guiding the shape of resizing.
fy : float
fy : float
The scale factor based on src height. Default is ``-1.0`` (Discarded).
The scale factor based on src height. Default is ``-1.0`` (Discarded).
fx : float
fx : float
...
@@ -433,11 +432,15 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
...
@@ -433,11 +432,15 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
if
dsize
is
not
None
:
if
dsize
is
not
None
:
if
len
(
dsize
)
!=
2
:
if
len
(
dsize
)
!=
2
:
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
size
,
dtype
=
'int32'
)
for
size
in
dsize
]
AddArgumentsWithDesc
(
arguments
,
dsize
,
'dsize'
,
'int32'
,
as_target
=
True
)
arguments
[
'dsize'
]
=
[
size
.
name
for
size
in
arguments
[
'extra_inputs'
]]
if
dsize
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
if
shape_like
is
not
None
:
raise
RuntimeError
(
'The dsize or fy/fx should be specified either.'
)
if
not
isinstance
(
shape_like
,
Tensor
):
raise
TypeError
(
'The shape_like should be a Tensor.'
)
arguments
[
'shape_like'
]
=
shape_like
.
name
if
dsize
is
None
and
shape_like
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize, shape_like or fy/fx should be specified either.'
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'NNResize'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'NNResize'
,
**
arguments
)
...
@@ -449,6 +452,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
...
@@ -449,6 +452,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
for
size
in
dsize
:
for
size
in
dsize
:
if
isinstance
(
size
,
Tensor
):
if
isinstance
(
size
,
Tensor
):
possible_to_infer_shape
=
False
possible_to_infer_shape
=
False
if
shape_like
is
not
None
:
possible_to_infer_shape
=
False
if
possible_to_infer_shape
:
if
possible_to_infer_shape
:
output
.
shape
=
inputs
.
shape
[:]
output
.
shape
=
inputs
.
shape
[:]
...
@@ -464,7 +469,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
...
@@ -464,7 +469,8 @@ def NNResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs):
return
output
return
output
def
BilinearResize
(
inputs
,
dsize
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
def
BilinearResize
(
inputs
,
dsize
,
shape_like
=
None
,
fy
=-
1.0
,
fx
=-
1.0
,
data_format
=
'NCHW'
,
**
kwargs
):
"""Resize the image with Bi-linear method.
"""Resize the image with Bi-linear method.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
Set ``dsize`` to None if you want to use ``fy`` and ``fx``.
...
@@ -475,6 +481,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
...
@@ -475,6 +481,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
The input tensor.
The input tensor.
dsize : tuple, list, Tensor or None
dsize : tuple, list, Tensor or None
The output size, formats as (h, w).
The output size, formats as (h, w).
shape_like : Tensor or None
The tensor for guiding the shape of resizing.
fy : float
fy : float
The scale factor based on src height. Default is ``-1.0`` (Discarded).
The scale factor based on src height. Default is ``-1.0`` (Discarded).
fx : float
fx : float
...
@@ -497,11 +505,15 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
...
@@ -497,11 +505,15 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
if
dsize
is
not
None
:
if
dsize
is
not
None
:
if
len
(
dsize
)
!=
2
:
if
len
(
dsize
)
!=
2
:
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
raise
ValueError
(
'The dsize should be a list with 2 elements.'
)
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
size
,
dtype
=
'int32'
)
for
size
in
dsize
]
AddArgumentsWithDesc
(
arguments
,
dsize
,
'dsize'
,
'int32'
,
as_target
=
True
)
arguments
[
'dsize'
]
=
[
size
.
name
for
size
in
arguments
[
'extra_inputs'
]]
if
dsize
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
if
shape_like
is
not
None
:
raise
RuntimeError
(
'The dsize or fy/fx should be specified either.'
)
if
not
isinstance
(
shape_like
,
Tensor
):
raise
TypeError
(
'The shape_like should be a Tensor.'
)
arguments
[
'shape_like'
]
=
shape_like
.
name
if
dsize
is
None
and
shape_like
is
None
and
(
fy
==
-
1.0
or
fx
==
-
1.0
):
raise
RuntimeError
(
'The dsize, shape_like or fy/fx should be specified either.'
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'BilinearResize'
,
**
arguments
)
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'BilinearResize'
,
**
arguments
)
...
@@ -513,6 +525,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
...
@@ -513,6 +525,8 @@ def BilinearResize(inputs, dsize, fy=-1.0, fx=-1.0, data_format='NCHW', **kwargs
for
size
in
dsize
:
for
size
in
dsize
:
if
isinstance
(
size
,
Tensor
):
if
isinstance
(
size
,
Tensor
):
possible_to_infer_shape
=
False
possible_to_infer_shape
=
False
if
shape_like
is
not
None
:
possible_to_infer_shape
=
False
if
possible_to_infer_shape
:
if
possible_to_infer_shape
:
output
.
shape
=
inputs
.
shape
[:]
output
.
shape
=
inputs
.
shape
[:]
...
...
Dragon/python/dragon/updaters.py
View file @
3d2abe6
...
@@ -20,7 +20,7 @@ class BaseUpdater(object):
...
@@ -20,7 +20,7 @@ class BaseUpdater(object):
BaseUpdater is designed to preprocess the gradients.
BaseUpdater is designed to preprocess the gradients.
"""
"""
def
__init__
(
self
,
scale_gradient
=
1.0
,
clip_gradient
=
-
1.0
,
def
__init__
(
self
,
scale_gradient
=
1.0
,
clip_gradient
=
-
1.0
,
l2_decay
=
-
1.0
,
slot
=
''
):
l2_decay
=
-
1.0
,
slot
=
''
,
verbose
=
True
):
"""Construct a Updater to optimize the objectives.
"""Construct a Updater to optimize the objectives.
Parameters
Parameters
...
@@ -42,6 +42,7 @@ class BaseUpdater(object):
...
@@ -42,6 +42,7 @@ class BaseUpdater(object):
self
.
_tuples
=
[]
self
.
_tuples
=
[]
self
.
_type
=
None
self
.
_type
=
None
self
.
_prefix
=
''
self
.
_prefix
=
''
self
.
_verbose
=
verbose
def
append
(
self
,
pair
,
lr_mult
=
1.0
,
decay_mult
=
1.0
):
def
append
(
self
,
pair
,
lr_mult
=
1.0
,
decay_mult
=
1.0
):
"""Append an ``UpdatePair`` into the updater.
"""Append an ``UpdatePair`` into the updater.
...
@@ -117,7 +118,7 @@ class SGDUpdater(BaseUpdater):
...
@@ -117,7 +118,7 @@ class SGDUpdater(BaseUpdater):
'momentum'
:
momentum
},
'momentum'
:
momentum
},
**
self
.
_hyper_params
)
**
self
.
_hyper_params
)
self
.
_type
=
'SGDUpdate'
self
.
_type
=
'SGDUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
NesterovUpdater
(
BaseUpdater
):
class
NesterovUpdater
(
BaseUpdater
):
...
@@ -140,7 +141,7 @@ class NesterovUpdater(BaseUpdater):
...
@@ -140,7 +141,7 @@ class NesterovUpdater(BaseUpdater):
'momentum'
:
momentum
},
'momentum'
:
momentum
},
**
self
.
_hyper_params
)
**
self
.
_hyper_params
)
self
.
_type
=
'NesterovUpdate'
self
.
_type
=
'NesterovUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
RMSPropUpdater
(
BaseUpdater
):
class
RMSPropUpdater
(
BaseUpdater
):
...
@@ -166,7 +167,7 @@ class RMSPropUpdater(BaseUpdater):
...
@@ -166,7 +167,7 @@ class RMSPropUpdater(BaseUpdater):
'eps'
:
eps
},
'eps'
:
eps
},
**
self
.
_hyper_params
)
**
self
.
_hyper_params
)
self
.
_type
=
'RMSPropUpdate'
self
.
_type
=
'RMSPropUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
class
AdamUpdater
(
BaseUpdater
):
class
AdamUpdater
(
BaseUpdater
):
...
@@ -195,4 +196,4 @@ class AdamUpdater(BaseUpdater):
...
@@ -195,4 +196,4 @@ class AdamUpdater(BaseUpdater):
'eps'
:
eps
},
'eps'
:
eps
},
**
self
.
_hyper_params
)
**
self
.
_hyper_params
)
self
.
_type
=
'AdamUpdate'
self
.
_type
=
'AdamUpdate'
self
.
echo
()
if
self
.
_verbose
:
self
.
echo
()
\ No newline at end of file
\ No newline at end of file
Dragon/python/dragon/vm/caffe/layers/vision.py
View file @
3d2abe6
...
@@ -264,9 +264,10 @@ class NNResizeLayer(Layer):
...
@@ -264,9 +264,10 @@ class NNResizeLayer(Layer):
def
Setup
(
self
,
bottom
):
def
Setup
(
self
,
bottom
):
super
(
NNResizeLayer
,
self
)
.
Setup
(
bottom
)
super
(
NNResizeLayer
,
self
)
.
Setup
(
bottom
)
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
if
isinstance
(
bottom
,
list
)
and
len
(
bottom
)
>
1
:
if
self
.
_param
[
'dsize'
]
is
None
:
dshape
=
ops
.
Shape
(
bottom
[
1
])
if
len
(
bottom
)
!=
2
:
self
.
_param
[
'dsize'
]
=
(
dshape
[
2
],
dshape
[
3
])
raise
ValueError
(
'The second bottom should be provided to determine the shape.'
)
self
.
_param
[
'shape_like'
]
=
bottom
[
1
]
return
ops
.
NNResize
(
input
,
**
self
.
_param
)
return
ops
.
NNResize
(
input
,
**
self
.
_param
)
...
@@ -296,7 +297,8 @@ class BilinearResizeLayer(Layer):
...
@@ -296,7 +297,8 @@ class BilinearResizeLayer(Layer):
def
Setup
(
self
,
bottom
):
def
Setup
(
self
,
bottom
):
super
(
BilinearResizeLayer
,
self
)
.
Setup
(
bottom
)
super
(
BilinearResizeLayer
,
self
)
.
Setup
(
bottom
)
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
input
=
bottom
[
0
]
if
isinstance
(
bottom
,
list
)
else
bottom
if
isinstance
(
bottom
,
list
)
and
len
(
bottom
)
>
1
:
if
self
.
_param
[
'dsize'
]
is
None
:
dshape
=
ops
.
Shape
(
bottom
[
1
])
if
len
(
bottom
)
!=
2
:
self
.
_param
[
'dsize'
]
=
(
dshape
[
2
],
dshape
[
3
])
raise
ValueError
(
'The second bottom should be provided to determine the shape.'
)
self
.
_param
[
'shape_like'
]
=
bottom
[
1
]
return
ops
.
BilinearResize
(
input
,
**
self
.
_param
)
return
ops
.
BilinearResize
(
input
,
**
self
.
_param
)
\ No newline at end of file
Dragon/python/setup.py
View file @
3d2abe6
...
@@ -36,7 +36,7 @@ find_packages('dragon')
...
@@ -36,7 +36,7 @@ find_packages('dragon')
find_modules
()
find_modules
()
setup
(
name
=
'dragon'
,
setup
(
name
=
'dragon'
,
version
=
'0.2.1.
8
'
,
version
=
'0.2.1.
9
'
,
description
=
'Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework'
,
description
=
'Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework'
,
url
=
'https://github.com/neopenx/Dragon'
,
url
=
'https://github.com/neopenx/Dragon'
,
author
=
'Ting Pan'
,
author
=
'Ting Pan'
,
...
...
Dragon/src/operators/activation/dropout_op.cc
View file @
3d2abe6
...
@@ -9,10 +9,10 @@ void DropoutOp<Context>::RunWithType() {
...
@@ -9,10 +9,10 @@ void DropoutOp<Context>::RunWithType() {
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
uint32_t
*
Mdata
=
mask
->
template
mutable_data
<
uint32_t
,
Context
>
();
uint32_t
*
Mdata
=
mask
->
template
mutable_data
<
uint32_t
,
Context
>
();
float
scale
=
use_scale
?
1.0
/
(
1.0
-
prob
())
:
1.0
;
if
(
this
->
phase
()
==
"TRAIN"
)
{
if
(
this
->
phase
()
==
"TRAIN"
)
{
kernel
::
Dropout
<
T
,
Context
>
(
output
(
0
)
->
count
(),
kernel
::
Dropout
<
T
,
Context
>
(
output
(
0
)
->
count
(),
prob
,
prob
(),
scale
,
scale
,
Xdata
,
Xdata
,
Mdata
,
Mdata
,
...
@@ -20,7 +20,7 @@ void DropoutOp<Context>::RunWithType() {
...
@@ -20,7 +20,7 @@ void DropoutOp<Context>::RunWithType() {
&
ctx
());
&
ctx
());
}
else
if
(
this
->
phase
()
==
"TEST"
)
{
}
else
if
(
this
->
phase
()
==
"TEST"
)
{
ctx
().
template
Copy
<
T
,
Context
,
Context
>
(
output
(
0
)
->
count
(),
Ydata
,
Xdata
);
ctx
().
template
Copy
<
T
,
Context
,
Context
>
(
output
(
0
)
->
count
(),
Ydata
,
Xdata
);
if
(
scale
==
1.0
)
math
::
Scal
<
T
,
Context
>
(
output
(
0
)
->
count
(),
1.0
-
prob
,
Ydata
);
if
(
scale
==
1.0
)
math
::
Scal
<
T
,
Context
>
(
output
(
0
)
->
count
(),
1.0
-
prob
()
,
Ydata
);
}
}
}
}
...
@@ -46,10 +46,10 @@ void DropoutGradientOp<Context>::RunWithType() {
...
@@ -46,10 +46,10 @@ void DropoutGradientOp<Context>::RunWithType() {
auto
*
dYdata
=
input
(
-
1
).
template
data
<
T
,
Context
>
();
auto
*
dYdata
=
input
(
-
1
).
template
data
<
T
,
Context
>
();
auto
*
dXdata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
dXdata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Mdata
=
mask
->
template
data
<
uint32_t
,
Context
>
();
auto
*
Mdata
=
mask
->
template
data
<
uint32_t
,
Context
>
();
float
scale
=
use_scale
?
1.0
/
(
1.0
-
prob
())
:
1.0
;
if
(
this
->
phase
()
==
"TRAIN"
)
{
if
(
this
->
phase
()
==
"TRAIN"
)
{
kernel
::
DropoutGrad
<
T
,
Context
>
(
output
(
0
)
->
count
(),
kernel
::
DropoutGrad
<
T
,
Context
>
(
output
(
0
)
->
count
(),
prob
,
prob
()
,
scale
,
scale
,
dYdata
,
dYdata
,
Mdata
,
Mdata
,
...
...
Dragon/src/operators/loss/softmax_cross_entropy_op.cc
View file @
3d2abe6
...
@@ -31,7 +31,7 @@ void SoftmaxCrossEntropyOp<Context>::RunWithType() {
...
@@ -31,7 +31,7 @@ void SoftmaxCrossEntropyOp<Context>::RunWithType() {
else
if
(
normalization
==
"NONE"
)
normalizer
=
1
;
else
if
(
normalization
==
"NONE"
)
normalizer
=
1
;
T
loss
=
math
::
ASum
<
T
,
Context
>
(
losses
.
count
(),
Ldata
);
T
loss
=
math
::
ASum
<
T
,
Context
>
(
losses
.
count
(),
Ldata
);
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
1
));
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
1
));
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
C
PUC
ontext
>
();
Ydata
[
0
]
=
loss
/
normalizer
;
Ydata
[
0
]
=
loss
/
normalizer
;
}
}
...
...
Dragon/src/operators/misc/initialize_op.cc
View file @
3d2abe6
...
@@ -12,23 +12,19 @@ void InitializeOp<Context>::RunWithType() {
...
@@ -12,23 +12,19 @@ void InitializeOp<Context>::RunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
InitializeOp
<
Context
>::
RunOnDevice
()
{
void
InitializeOp
<
Context
>::
RunOnDevice
()
{
vector
<
TIndex
>
dims
;
vector
<
TIndex
>
output_shape
;
if
(
shape_desc
.
empty
())
{
if
(
shape_desc
.
empty
())
{
// determine the shape from dimensions
// determine the shape from dimensions
for
(
auto
&
dim_desc
:
dims_desc
)
{
int
ndims
=
(
int
)
std
::
max
(
dims_value
.
size
(),
dims_desc
.
size
());
Tensor
*
dim
=
ws
()
->
GetTensor
(
dim_desc
);
for
(
int
i
=
0
;
i
<
ndims
;
i
++
)
output_shape
.
push_back
(
dims
(
i
));
CHECK_EQ
(
dim
->
count
(),
1
)
<<
"
\n
The dimension should be a scalar."
;
CHECK
(
dim
->
IsType
<
int
>
())
<<
"
\n
The type of dimension should be int32."
;
dims
.
push_back
(
dim
->
template
data
<
int
,
CPUContext
>
()[
0
]);
}
}
else
{
}
else
{
// determine the shape from given shape
// determine the shape from given shape
Tensor
*
shape
=
ws
()
->
GetTensor
(
shape_desc
);
Tensor
*
shape
=
ws
()
->
GetTensor
(
shape_desc
);
CHECK
(
shape
->
IsType
<
int
>
())
<<
"
\n
The type of shape should be int32."
;
CHECK
(
shape
->
IsType
<
int
>
())
<<
"
\n
The type of shape should be int32."
;
auto
*
shape_data
=
shape
->
template
data
<
int
,
CPUContext
>
();
auto
*
shape_data
=
shape
->
template
data
<
int
,
CPUContext
>
();
for
(
int
i
=
0
;
i
<
shape
->
count
();
i
++
)
dims
.
push_back
(
shape_data
[
i
]);
for
(
int
i
=
0
;
i
<
shape
->
count
();
i
++
)
output_shape
.
push_back
(
shape_data
[
i
]);
}
}
output
(
0
)
->
Reshape
(
dims
);
output
(
0
)
->
Reshape
(
output_shape
);
RunWithType
<
float
>
();
RunWithType
<
float
>
();
}
}
...
...
Dragon/src/operators/ndarray/arange_op.cc
View file @
3d2abe6
...
@@ -4,39 +4,18 @@
...
@@ -4,39 +4,18 @@
namespace
dragon
{
namespace
dragon
{
template
<
class
Context
>
void
ArangeOp
<
Context
>::
Reshape
()
{
// parse start & step & stop
Tensor
*
t
=
ws
()
->
GetTensor
(
start_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The start should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of start should be int32."
;
start
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
t
=
ws
()
->
GetTensor
(
step_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The step should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of step should be int32."
;
step
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
!
stop_desc
.
empty
())
{
t
=
ws
()
->
GetTensor
(
stop_desc
);
CHECK_EQ
(
t
->
count
(),
1
)
<<
"
\n
The stop should be a scalar"
;
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of stop should be int32."
;
stop
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
}
else
{
stop
=
start
;
start
=
0
;
}
count
=
(
stop
-
start
-
1
)
/
step
+
1
;
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
count
));
}
template
<
class
Context
>
template
<
typename
T
>
template
<
class
Context
>
template
<
typename
T
>
void
ArangeOp
<
Context
>::
RunWithType
()
{
void
ArangeOp
<
Context
>::
RunWithType
()
{
TIndex
start_
=
start
(),
step_
=
step
(),
stop_
=
stop
(),
count
;
if
(
stop_
==
0
)
{
stop_
=
start_
;
start_
=
0
;
}
count
=
(
stop_
-
start_
-
1
)
/
step_
+
1
;
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
count
));
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
kernel
::
Arange
<
T
,
Context
>
(
count
,
start
,
step
,
Ydata
);
kernel
::
Arange
<
T
,
Context
>
(
count
,
start
_
,
step_
,
Ydata
);
}
}
template
<
class
Context
>
template
<
class
Context
>
void
ArangeOp
<
Context
>::
RunOnDevice
()
{
void
ArangeOp
<
Context
>::
RunOnDevice
()
{
Reshape
();
if
(
dtype
==
"FLOAT32"
)
RunWithType
<
float
>
();
if
(
dtype
==
"FLOAT32"
)
RunWithType
<
float
>
();
else
if
(
dtype
==
"INT32"
)
RunWithType
<
int
>
();
else
if
(
dtype
==
"INT32"
)
RunWithType
<
int
>
();
else
LOG
(
FATAL
)
<<
"Unsupported data types"
;
else
LOG
(
FATAL
)
<<
"Unsupported data types"
;
...
...
Dragon/src/operators/ndarray/repeat_op.cc
View file @
3d2abe6
...
@@ -12,7 +12,7 @@ void RepeatOp<Context>::RunWithType() {
...
@@ -12,7 +12,7 @@ void RepeatOp<Context>::RunWithType() {
outer_dim
,
outer_dim
,
dim
,
dim
,
inner_dim
,
inner_dim
,
reps
,
repeats
()
,
Xdata
,
Xdata
,
Ydata
,
Ydata
,
&
ctx
());
&
ctx
());
...
@@ -20,20 +20,16 @@ void RepeatOp<Context>::RunWithType() {
...
@@ -20,20 +20,16 @@ void RepeatOp<Context>::RunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
RepeatOp
<
Context
>::
RunOnDevice
()
{
void
RepeatOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
dim
=
input
(
0
).
count
();
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
rep
s
));
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
rep
eats
()
));
}
else
{
}
else
{
outer_dim
=
input
(
0
).
count
(
0
,
axis
);
outer_dim
=
input
(
0
).
count
(
0
,
axis
);
dim
=
input
(
0
).
dim
(
axis
);
dim
=
input
(
0
).
dim
(
axis
);
inner_dim
=
input
(
0
).
count
(
axis
+
1
);
inner_dim
=
input
(
0
).
count
(
axis
+
1
);
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
dims
[
axis
]
*=
rep
s
;
dims
[
axis
]
*=
rep
eats
()
;
output
(
0
)
->
Reshape
(
dims
);
output
(
0
)
->
Reshape
(
dims
);
}
}
...
@@ -55,7 +51,7 @@ void RepeatGradientOp<Context>::RunWithType() {
...
@@ -55,7 +51,7 @@ void RepeatGradientOp<Context>::RunWithType() {
outer_dim
,
outer_dim
,
dim
,
dim
,
inner_dim
,
inner_dim
,
reps
,
repeats
()
,
dYdata
,
dYdata
,
dXdata
,
dXdata
,
&
ctx
());
&
ctx
());
...
@@ -63,10 +59,6 @@ void RepeatGradientOp<Context>::RunWithType() {
...
@@ -63,10 +59,6 @@ void RepeatGradientOp<Context>::RunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
RepeatGradientOp
<
Context
>::
RunOnDevice
()
{
void
RepeatGradientOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
dim
=
input
(
0
).
count
();
...
...
Dragon/src/operators/ndarray/tile_op.cc
View file @
3d2abe6
...
@@ -25,15 +25,9 @@ void TileOp<Context>::TileRunWithType() {
...
@@ -25,15 +25,9 @@ void TileOp<Context>::TileRunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
TileOp
<
Context
>::
RunOnDevice
()
{
void
TileOp
<
Context
>::
RunOnDevice
()
{
// parse tasks from desc
CHECK_EQ
(
multiples_desc
.
size
(),
input
(
0
).
ndim
())
<<
"
\n
The num of dimensions of input is "
<<
input
(
0
).
ndim
()
<<
", but provided "
<<
multiples_desc
.
size
()
<<
" multiples."
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
for
(
int
i
=
0
;
i
<
multiples_desc
.
size
();
i
++
)
{
for
(
int
i
=
0
;
i
<
input
(
0
).
ndim
();
i
++
)
int
mult
=
ws
()
->
GetTensor
(
multiples_desc
[
i
])
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
multiples
(
i
)
>
1
)
process_axes
.
push_back
({
multiples
(
i
),
i
});
if
(
mult
>
1
)
process_axes
.
push_back
({
mult
,
i
});
}
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
// do nothing
// do nothing
...
@@ -90,15 +84,9 @@ void TileGradientOp<Context>::TileRunWithType() {
...
@@ -90,15 +84,9 @@ void TileGradientOp<Context>::TileRunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
TileGradientOp
<
Context
>::
RunOnDevice
()
{
void
TileGradientOp
<
Context
>::
RunOnDevice
()
{
// parse tasks from desc
CHECK_EQ
(
multiples_desc
.
size
(),
input
(
-
1
).
ndim
())
<<
"
\n
The num of dimensions of input is "
<<
input
(
-
1
).
ndim
()
<<
", but provided "
<<
multiples_desc
.
size
()
<<
" multiples."
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
vector
<
pair
<
int
,
int
>
>
process_axes
;
for
(
int
i
=
0
;
i
<
multiples_desc
.
size
();
i
++
)
{
for
(
int
i
=
0
;
i
<
input
(
0
).
ndim
();
i
++
)
int
mult
=
ws
()
->
GetTensor
(
multiples_desc
[
i
])
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
multiples
(
i
)
>
1
)
process_axes
.
push_back
({
multiples
(
i
),
i
});
if
(
mult
>
1
)
process_axes
.
push_back
({
mult
,
i
});
}
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
std
::
sort
(
process_axes
.
begin
(),
process_axes
.
end
());
std
::
reverse
(
process_axes
.
begin
(),
process_axes
.
end
());
std
::
reverse
(
process_axes
.
begin
(),
process_axes
.
end
());
...
...
Dragon/src/operators/vision/bilinear_resize_op.cc
View file @
3d2abe6
...
@@ -8,19 +8,19 @@ namespace dragon {
...
@@ -8,19 +8,19 @@ namespace dragon {
template
<
class
Context
>
template
<
typename
T
>
template
<
class
Context
>
template
<
typename
T
>
void
BilinearResizeOp
<
Context
>::
RunWithType
()
{
void
BilinearResizeOp
<
Context
>::
RunWithType
()
{
if
(
data_format
==
"NCHW"
)
{
if
(
data_format
==
"NCHW"
)
{
n
=
dims
[
0
]
;
n
=
input
(
0
).
dim
(
0
)
;
c
=
dims
[
1
]
;
c
=
input
(
0
).
dim
(
1
)
;
h
=
input
(
0
).
dim
(
2
);
h
=
input
(
0
).
dim
(
2
);
w
=
input
(
0
).
dim
(
3
);
w
=
input
(
0
).
dim
(
3
);
out_h
=
dims
[
2
]
;
out_h
=
output
(
0
)
->
dim
(
2
)
;
out_w
=
dims
[
3
]
;
out_w
=
output
(
0
)
->
dim
(
3
)
;
}
else
if
(
data_format
==
"NHWC"
)
{
}
else
if
(
data_format
==
"NHWC"
)
{
n
=
dims
[
0
]
;
n
=
input
(
0
).
dim
(
0
)
;
h
=
input
(
0
).
dim
(
1
);
h
=
input
(
0
).
dim
(
1
);
w
=
input
(
0
).
dim
(
2
);
w
=
input
(
0
).
dim
(
2
);
out_h
=
dims
[
1
]
;
c
=
input
(
0
).
dim
(
3
)
;
out_
w
=
dims
[
2
]
;
out_
h
=
output
(
0
)
->
dim
(
1
)
;
c
=
dims
[
3
]
;
out_w
=
output
(
0
)
->
dim
(
2
)
;
}
}
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
...
@@ -33,14 +33,14 @@ void BilinearResizeOp<Context>::RunWithType() {
...
@@ -33,14 +33,14 @@ void BilinearResizeOp<Context>::RunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
BilinearResizeOp
<
Context
>::
RunOnDevice
()
{
void
BilinearResizeOp
<
Context
>::
RunOnDevice
()
{
dims
=
input
(
0
).
dims
();
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
if
(
dsize_desc
.
size
()
>
0
)
{
if
(
dsize_desc
.
size
()
>
0
||
dsize_value
.
size
()
>
0
)
{
CHECK_EQ
(
dsize_desc
.
size
(),
2
)
<<
"
\n
The dsize should be a scalar with 2 elements."
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
dims
[
spatial_axis
+
i
]
=
dsize
(
i
);
Tensor
*
dsize
=
ws
()
->
GetTensor
(
dsize_desc
[
i
]);
}
else
if
(
!
shape_like_desc
.
empty
())
{
CHECK
(
dsize
->
IsType
<
int
>
())
<<
"
\n
The type of dsize should be int32."
;
Tensor
*
shape_like_tensor
=
ws
()
->
GetTensor
(
shape_like_desc
)
;
dims
[
spatial_axis
+
i
]
=
dsize
->
template
data
<
int
,
CPUContext
>
()[
0
];
for
(
int
i
=
0
;
i
<
2
;
i
++
)
}
dims
[
spatial_axis
+
i
]
=
shape_like_tensor
->
dim
(
spatial_axis
+
i
);
}
else
{
}
else
{
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
<<
"
\n
The fx and fy should be set."
;
<<
"
\n
The fx and fy should be set."
;
...
...
Dragon/src/operators/vision/conv_op_base.cc
View file @
3d2abe6
...
@@ -29,14 +29,13 @@ void ConvOpBase<Context>::ComputeOutputShape() {
...
@@ -29,14 +29,13 @@ void ConvOpBase<Context>::ComputeOutputShape() {
const
TIndex
output_dim
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
2
*
pad
[
i
];
const
TIndex
output_dim
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
2
*
pad
[
i
];
output_shape
.
push_back
(
output_dim
);
output_shape
.
push_back
(
output_dim
);
}
else
{
}
else
{
CHECK
(
output_dims_desc
.
size
()
>
0
)
CHECK
(
output_dims_desc
.
size
()
>
0
||
output_dims_value
.
size
()
>
0
)
<<
"
\n
The output shape must be specified if using SAME padding algorithm."
;
<<
"
\n
The output shape must be specified if using SAME padding algorithm."
;
CHECK_EQ
((
int
)
output_dims_desc
.
size
(),
num_spatial_axes
+
2
)
int
given_ndim
=
(
int
)
std
::
max
(
output_dims_desc
.
size
(),
output_dims_value
.
size
());
CHECK_EQ
(
given_ndim
,
num_spatial_axes
+
2
)
<<
"
\n
The len of output shape should be "
<<
num_spatial_axes
+
2
<<
"
\n
The len of output shape should be "
<<
num_spatial_axes
+
2
<<
", but got "
<<
output_dims_desc
.
size
()
<<
"."
;
<<
", but got "
<<
output_dims_desc
.
size
()
<<
"."
;
Tensor
*
t
=
ws
()
->
GetTensor
(
output_dims_desc
[
spatial_axis
+
i
]);
TIndex
output_dim
=
output_dims
(
spatial_axis
+
i
);
CHECK
(
t
->
IsType
<
int
>
())
<<
"
\n
The type of output shape should be int32."
;
TIndex
output_dim
=
t
->
template
data
<
int
,
CPUContext
>
()[
0
];
TIndex
padding_needed
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
output_dim
;
TIndex
padding_needed
=
stride
[
i
]
*
(
input_dim
-
1
)
+
dilated_kernel
-
output_dim
;
CHECK_GE
(
padding_needed
,
0
)
CHECK_GE
(
padding_needed
,
0
)
<<
"
\n
The output shape is incorrect."
<<
"
\n
The output shape is incorrect."
...
...
Dragon/src/operators/vision/nn_resize_op.cc
View file @
3d2abe6
...
@@ -34,13 +34,13 @@ void NNResizeOp<Context>::RunWithType() {
...
@@ -34,13 +34,13 @@ void NNResizeOp<Context>::RunWithType() {
template
<
class
Context
>
template
<
class
Context
>
void
NNResizeOp
<
Context
>::
RunOnDevice
()
{
void
NNResizeOp
<
Context
>::
RunOnDevice
()
{
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
if
(
dsize_desc
.
size
()
>
0
)
{
if
(
dsize_desc
.
size
()
>
0
||
dsize_value
.
size
()
>
0
)
{
CHECK_EQ
(
dsize_desc
.
size
(),
2
)
<<
"
\n
The dsize should be a scalar with 2 elements."
;
for
(
int
i
=
0
;
i
<
2
;
i
++
)
for
(
int
i
=
0
;
i
<
2
;
i
++
)
{
dims
[
spatial_axis
+
i
]
=
dsize
(
i
);
Tensor
*
dsize
=
ws
()
->
GetTensor
(
dsize_desc
[
i
]);
}
else
if
(
!
shape_like_desc
.
empty
())
{
CHECK
(
dsize
->
IsType
<
int
>
())
<<
"
\n
The type of dsize should be int32."
;
Tensor
*
shape_like_tensor
=
ws
()
->
GetTensor
(
shape_like_desc
)
;
dims
[
spatial_axis
+
i
]
=
dsize
->
template
data
<
int
,
CPUContext
>
()[
0
];
for
(
int
i
=
0
;
i
<
2
;
i
++
)
}
dims
[
spatial_axis
+
i
]
=
shape_like_tensor
->
dim
(
spatial_axis
+
i
);
}
else
{
}
else
{
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
CHECK
(
fy
!=
-
1.0
&&
fx
!=
-
1.0
)
<<
"
\n
The fx and fy should be set."
;
<<
"
\n
The fx and fy should be set."
;
...
...
examples/GA3C/ProcessAgent.py
View file @
3d2abe6
...
@@ -84,6 +84,8 @@ class ProcessAgent(Process):
...
@@ -84,6 +84,8 @@ class ProcessAgent(Process):
continue
continue
prediction
,
value
=
self
.
predict
(
self
.
env
.
current_state
)
prediction
,
value
=
self
.
predict
(
self
.
env
.
current_state
)
action
=
self
.
select_action
(
prediction
)
action
=
self
.
select_action
(
prediction
)
reward
,
done
=
self
.
env
.
step
(
action
)
reward
,
done
=
self
.
env
.
step
(
action
)
reward_sum
+=
reward
reward_sum
+=
reward
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment