Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
Dragon
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 6b82cb26
authored
May 24, 2019
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix the missing alias in SimulateGC
1 parent
4eab1c68
Hide whitespace changes
Inline
Side-by-side
Showing
40 changed files
with
629 additions
and
613 deletions
Docs/api/python/contents/core/workspace.rst
Dragon/CMakeLists.txt
Dragon/include/core/graph.h
Dragon/include/core/operator.h
Dragon/include/core/operator_gradient.h
Dragon/include/core/workspace.h
Dragon/include/operators/update/collective_update_op.h
Dragon/include/utils/caffemodel.h
Dragon/include/utils/string.h
Dragon/modules/python/py_module.cc
Dragon/modules/python/py_proto.h
Dragon/python/dragon/core/workspace.py
Dragon/python/dragon/utils/vision/blob_fetcher.py
Dragon/python/dragon/utils/vision/data_batch.py
Dragon/python/dragon/utils/vision/data_reader.py
Dragon/python/dragon/utils/vision/data_transformer.py
Dragon/python/dragon/vm/onnx/helper.py
Dragon/python/dragon/vm/torch/module.py
Dragon/python/dragon/vm/torch/ops/modules/array.py
Dragon/python/dragon/vm/torch/ops/modules/control_flow.py
Dragon/python/dragon/vm/torch/ops/modules/init.py
Dragon/python/dragon/vm/torch/ops/modules/vision.py
Dragon/python/dragon/vm/torch/utils/data/blob_fetcher.py
Dragon/python/dragon/vm/torch/utils/data/data_batch.py
Dragon/python/dragon/vm/torch/utils/data/data_transformer.py
Dragon/python/dragon/vm/torch/utils/data/dataloader.py
Dragon/src/core/graph.cc
Dragon/src/core/graph_gradient.cc
Dragon/src/core/graph_optimizer.cc
Dragon/src/core/mixedmem.cc
Dragon/src/core/operator.cc
Dragon/src/core/workspace.cc
Dragon/src/kernels/array/index_select_op_kernel.cc
Dragon/src/onnx/onnx_importer.cc
Dragon/src/operators/activation/cudnn_dropout_op.cc
Dragon/src/operators/activation/dropout_op.cc
Dragon/src/operators/recurrent/cudnn_recurrent_op.cc
Dragon/src/operators/vision/conv_op_base.cc
Dragon/src/operators/vision/pool2d_op.cc
Dragon/src/utils/logging.cc
Docs/api/python/contents/core/workspace.rst
View file @
6b82cb2
...
...
@@ -5,6 +5,18 @@
.. toctree::
:hidden:
Workspace
---------
============================== =============================================================================
List Brief
============================== =============================================================================
`Workspace(object)`_ A wrapper for the C implemented workspace.
`get_default_workspace`_ Return the current default workspace.
`reset_default_workspace`_ Reset the global default workspace.
============================== =============================================================================
Tensor
------
...
...
@@ -41,20 +53,14 @@ List Brief
`RunGraph`_ Run the specific graph.
============================== =============================================================================
Misc
---
-
I/O
---
============================== =============================================================================
List Brief
============================== =============================================================================
`Snapshot`_ Snapshot tensors into a binary file.
`Restore`_ Restore tensors from a binary file.
`SwitchWorkspace`_ Switch to the specific Workspace.
`MoveWorkspace`_ Move the source workspace into the target workspace.
`ResetWorkspace`_ Reset the specific workspace.
`ClearWorkspace`_ Clear the specific workspace.
`LogMetaGraph`_ Log the meta graph.
`ExportMetaGraph`_ Export the meta graph into a file under specific folder.
============================== =============================================================================
API Reference
...
...
@@ -63,12 +69,15 @@ API Reference
.. automodule:: dragon.core.workspace
:members:
:undoc-members:
:show-inheritance:
.. _SwitchWorkspace: #dragon.core.workspace.SwitchWorkspace
.. _MoveWorkspace: #dragon.core.workspace.MoveWorkspace
.. _ResetWorkspace: #dragon.core.workspace.ResetWorkspace
.. _ClearWorkspace: #dragon.core.workspace.ClearWorkspace
.. autoclass:: Workspace
:members:
.. automethod:: __init__
.. _Workspace(object): #dragon.core.workspace.Workspace
.. _get_default_workspace: #dragon.core.workspace.get_default_workspace
.. _reset_default_workspace: #dragon.core.workspace.reset_default_workspace
.. _CreateGraph: #dragon.core.workspace.CreateGraph
.. _HasTensor: #dragon.core.workspace.HasTensor
.. _GetTensorName: #dragon.core.workspace.GetTensorName
...
...
@@ -81,8 +90,5 @@ API Reference
.. _RunGraph: #dragon.core.workspace.RunGraph
.. _Snapshot: #dragon.core.workspace.Snapshot
.. _Restore: #dragon.core.workspace.Restore
.. _LogMetaGraph: #dragon.core.workspace.LogMetaGraph
.. _ExportMetaGraph: #dragon.core.workspace.ExportMetaGraph
.. _theano.function(*args, **kwargs): ../vm/theano/compile.html#dragon.vm.theano.compile.function.function
.. _config.ExportMetaGraph(prefix): ../config.html#dragon.config.ExportMetaGraph
\ No newline at end of file
.. _theano.function(*args, **kwargs): ../vm/theano/compile.html#dragon.vm.theano.compile.function.function
\ No newline at end of file
Dragon/CMakeLists.txt
View file @
6b82cb2
...
...
@@ -178,7 +178,7 @@ if(WIN32)
endif
()
if
(
UNIX
)
set
(
CMAKE_C_FLAGS
"
${
CMAKE_C_FLAGS
}
-s -fPIC"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-s -
w -
fPIC -O3 -m64 -std=c++11"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-s -fPIC -O3 -m64 -std=c++11"
)
if
(
WITH_OMP
AND
(
NOT APPLE
))
set
(
CMAKE_C_FLAGS
"
${
CMAKE_C_FLAGS
}
-fopenmp"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-fopenmp"
)
...
...
Dragon/include/core/graph.h
View file @
6b82cb2
...
...
@@ -39,18 +39,39 @@ class GraphBase {
const
string
&
exclude
,
int
stream_id
=
0
)
=
0
;
/*! \brief Return the
name of this graph
*/
/*! \brief Return the
graph name
*/
string
name
()
const
{
return
name_
;
}
/*! \brief Return the defined running phase */
const
string
&
phase
()
const
{
return
phase_
;
}
/*! \brief Return the argument map */
const
Map
<
std
::
string
,
const
Argument
*>&
args
()
{
return
args_
;
}
/*! \brief Return the specified argument */
const
Argument
&
arg
(
const
string
&
name
)
{
return
*
(
args_
[
name
]);
}
/*! \brief Return the stored raw def */
const
GraphDef
&
def
()
const
{
return
def_
;
}
/*! \brief Return the stored opt def */
const
GraphDef
&
opt_def
()
const
{
return
opt_def_
;
}
/*! \brief Return the parent workspace */
Workspace
*
ws
()
const
{
return
ws_
;
}
protected
:
/*! \brief Store the name and running phase */
string
name_
,
phase_
;
/*! \brief Store the defined arguments */
Map
<
string
,
Argument
>
args_
;
Map
<
string
,
const
Argument
*
>
args_
;
/*! \brief Store the parent workspace */
Workspace
*
ws_
;
/*! \brief Store the def */
GraphDef
def_
,
opt_def_
;
};
class
Graph
:
public
GraphBase
{
...
...
@@ -72,9 +93,6 @@ class Graph : public GraphBase {
const
string
&
exclude
,
int
stream_id
=
0
)
override
;
/*! \brief Return the parent workspace */
Workspace
*
ws
()
const
{
return
ws_
;
}
protected
:
/*! \brief Store the internal operators */
vector
<
OperatorBase
*>
ops_
;
...
...
Dragon/include/core/operator.h
View file @
6b82cb2
...
...
@@ -48,13 +48,13 @@ class OperatorBase {
/*! \brief Return the number of outputs */
int
YSize
()
{
return
(
int
)
outputs_
.
size
();
}
/*! \brief Modify
this
operator according to the given def */
/*! \brief Modify operator according to the given def */
void
UpdateFrom
(
const
OperatorDef
&
def
);
/*! \brief Switch the internal running phase */
void
SwitchToPhase
(
const
string
&
phase
)
{
phase_
=
phase
;
}
/*! \brief Run
this
operator on the specified stream */
/*! \brief Run operator on the specified stream */
virtual
void
Run
(
int
stream_id
=
0
)
{
NOT_IMPLEMENTED
;
}
/*! \brief Fusion this operator into the specified graph */
...
...
@@ -69,18 +69,18 @@ class OperatorBase {
/*! \brief Return the current running phase */
const
string
&
phase
()
const
{
return
phase_
;
}
/*! \brief Return the
anchor name of this operator
*/
const
string
&
anchor
()
const
{
return
anchor
_
;
}
/*! \brief Return the
resource handle
*/
const
string
&
handle
()
const
{
return
handle
_
;
}
/*! \brief Return the data type
of this operator
*/
/*! \brief Return the data type */
const
string
&
dtype
()
const
{
return
dtype_
;
}
/*! \brief Return the data format
of this operator
*/
/*! \brief Return the data format */
const
string
&
data_format
()
const
{
return
data_format_
;
}
/*! \brief Return the unique name in this operator */
const
string
unique_name
(
const
string
&
name
)
const
{
return
"/mnt/"
+
anchor
_
+
"/"
+
name
;
return
"/mnt/"
+
handle
_
+
"/"
+
name
;
}
/*! \brief Return the parent workspace */
...
...
@@ -94,7 +94,7 @@ class OperatorBase {
template
<
typename
T
>
vector
<
T
>
Args
(
const
string
&
name
);
/*! \brief Return the argument map
of this operator
*/
/*! \brief Return the argument map */
const
Map
<
std
::
string
,
const
Argument
*>&
args
()
{
return
args_
;
}
/*! \brief Return the specified argument */
...
...
@@ -102,7 +102,7 @@ class OperatorBase {
typedef
Map
<
string
,
vector
<
OperatorBase
*>>
SubGraph
;
/*! \brief Return the recomputing subgraph
of this operator
*/
/*! \brief Return the recomputing subgraph */
SubGraph
&
subgraph
()
{
return
subgraph_
;
}
/*! \brief Set the given recomputing subgraph */
...
...
@@ -110,29 +110,38 @@ class OperatorBase {
subgraph_
=
subgraph
;
}
/*! \brief Return the stored
operator
def */
/*! \brief Return the stored def */
const
OperatorDef
&
def
()
const
{
return
def_
;
}
/*! \brief Return the debug string of
the stored operator
def */
/*! \brief Return the debug string of
stored
def */
string
DebugString
()
const
{
return
def_
.
DebugString
();
}
/*! \brief Return the dtype string according to given tensor */
string
DTypeString
(
const
Tensor
&
tensor
,
const
Set
<
string
>&
dtypes
)
const
;
string
DTypeString
(
const
Tensor
&
,
const
Set
<
string
>&
)
const
;
/* \brief Return the dtype string according to given type */
string
DTypeString
(
const
string
&
dtype
,
const
Set
<
string
>&
dtypes
)
const
;
string
DTypeString
(
const
string
&
,
const
Set
<
string
>&
)
const
;
protected
:
/*! \brief Store the parent workspace */
Workspace
*
ws_
;
/*! \brief Store the def */
OperatorDef
def_
;
/*! \brief Store the recomputing subgraph */
SubGraph
subgraph_
;
string
phase_
,
anchor_
;
/*! \brief Store the phase and handle */
string
phase_
,
handle_
;
/*! \brief Store the data type and format */
string
dtype_
,
data_format_
;
/*! \brief Store the pointer of inputs and outputs */
vector
<
Tensor
*>
inputs_
,
outputs_
;
/*! \brief Store the defined arguments */
Map
<
string
,
const
Argument
*>
args_
;
};
...
...
@@ -236,7 +245,7 @@ OperatorBase* NewOperator(
using OperatorBase::name; \
using OperatorBase::type; \
using OperatorBase::phase; \
using OperatorBase::
anchor
; \
using OperatorBase::
handle
; \
using OperatorBase::dtype; \
using OperatorBase::data_format; \
using OperatorBase::unique_name; \
...
...
@@ -432,7 +441,7 @@ DEFINE_TENSOR_TYPES_DISPATCHER(TensorTypes, RunImpl);
<< arg##_desc_.size() << ")."; \
auto* arg##T = ws()->GetTensor( \
str::replace_first(arg##_desc_[i], \
"${
ANCHOR}", anchor
())); \
"${
HANDLE}", handle
())); \
CHECK(arg##T->template IsType<type>()) \
<< "\nThe type of " << #arg << " should be " << #type << "."; \
CHECK_EQ(arg##T->count(), 1) \
...
...
Dragon/include/core/operator_gradient.h
View file @
6b82cb2
...
...
@@ -48,15 +48,16 @@ class GradientMakerBase {
virtual
Gradient
Make
()
{
auto
new_defs
=
MakeDef
();
if
(
def
.
has_uid
())
{
// Attach the
anchor
to name if having UID
// Attach the
handle
to name if having UID
for
(
int
i
=
0
;
i
<
new_defs
.
size
();
i
++
)
new_defs
[
i
].
set_name
(
def
.
name
());
}
else
{
// Otherwise, just put it into the arguments
Argument
anchor
;
anchor
.
set_name
(
"anchor"
);
anchor
.
set_s
(
def
.
name
());
Argument
arg
;
arg
.
set_name
(
"handle"
);
arg
.
set_s
(
def
.
name
());
for
(
int
i
=
0
;
i
<
new_defs
.
size
();
i
++
)
new_defs
[
i
].
add_arg
()
->
CopyFrom
(
a
nchor
);
new_defs
[
i
].
add_arg
()
->
CopyFrom
(
a
rg
);
}
return
Gradient
(
new_defs
,
g_inputs_
,
defaults
());
};
...
...
Dragon/include/core/workspace.h
View file @
6b82cb2
...
...
@@ -45,13 +45,13 @@ class Workspace {
void
Clear
();
/*! \brief Merge from a external workspace */
void
MergeFrom
(
Workspace
*
ws
);
void
MergeFrom
(
Workspace
*
);
/*! \brief Query the real name of specified tensor */
string
GetTensorName
(
const
string
&
name
)
const
;
string
GetTensorName
(
const
string
&
)
const
;
/*! \brief Try to serach the specified tensor in this workspace */
Tensor
*
TryGetTensor
(
const
string
&
name
,
bool
use_remote
=
true
)
const
;
Tensor
*
TryGetTensor
(
const
string
&
,
bool
=
true
)
const
;
/*! \brief Whether the specified tensor is in this workspace */
bool
HasTensor
(
const
string
&
name
,
bool
use_remote
=
true
)
const
{
...
...
@@ -59,22 +59,22 @@ class Workspace {
}
/*! \brief Create the specified tensor */
Tensor
*
CreateTensor
(
const
string
&
name
);
Tensor
*
CreateTensor
(
const
string
&
);
/*! \brief Return the specified tensor */
Tensor
*
GetTensor
(
const
string
&
name
,
bool
use_remote
=
true
)
const
;
Tensor
*
GetTensor
(
const
string
&
,
bool
=
true
)
const
;
/*! \brief Reset the specified tensor */
void
ResetTensor
(
const
string
&
name
);
void
ResetTensor
(
const
string
&
);
/* \brief Whether the specified filler is in this workspace */
bool
HasFiller
(
const
string
&
name
,
bool
use_remote
=
true
)
const
;
bool
HasFiller
(
const
string
&
,
bool
=
true
)
const
;
/*! \brief Create the specified filler */
void
CreateFiller
(
const
TensorFillerProto
&
filler
);
void
CreateFiller
(
const
TensorFillerProto
&
);
/*! \brief Return the specified filler */
const
TensorFillerProto
*
GetFiller
(
const
string
&
name
)
const
;
const
TensorFillerProto
*
GetFiller
(
const
string
&
)
const
;
/*! \brief Create temporal data segments */
template
<
class
Context
>
...
...
@@ -103,16 +103,16 @@ class Workspace {
}
/*! \brief Create a operator in this workspace */
OperatorBase
*
CreateOperator
(
const
OperatorDef
&
def
);
OperatorBase
*
CreateOperator
(
const
OperatorDef
&
);
/*! \brief Run the specified persistent operator */
void
RunOperator
(
const
OperatorDef
&
def
);
void
RunOperator
(
const
OperatorDef
&
);
/*! \brief Try to run the operator in a adaptive mode */
void
RunOperatorOnce
(
const
OperatorDef
&
def
);
void
RunOperatorOnce
(
const
OperatorDef
&
);
/*! \brief Create a Graph in this workspace */
GraphBase
*
CreateGraph
(
const
GraphDef
&
def
);
GraphBase
*
CreateGraph
(
const
GraphDef
&
);
/*! \brief Run the specifed graph by name and rules */
void
RunGraph
(
...
...
Dragon/include/operators/update/collective_update_op.h
View file @
6b82cb2
...
...
@@ -28,7 +28,7 @@ class CollectiveUpdateOp final
Workspace
*
ws
)
:
MPIOpBase
<
Context
>
(
def
,
ws
),
mode_
(
OpArg
<
string
>
(
"mode"
,
""
))
{
if
(
mode_
.
find
(
"NCCL"
)
!=
string
::
npos
)
InitNCCL
();
if
(
str
::
find
(
mode_
,
"NCCL"
)
)
InitNCCL
();
}
USE_OPERATOR_FUNCTIONS
;
USE_MPI_FUNCTIONS
;
...
...
@@ -37,7 +37,7 @@ class CollectiveUpdateOp final
/* TODO(PhyscalX): Temporarily disable it,
to avoid a unhandled error. */
#ifdef WITH_NCCL
if
(
mode_
.
find
(
"NCCL"
)
!=
string
::
npos
)
{
if
(
str
::
find
(
mode_
,
"NCCL"
)
)
{
/* ncclCommDestroy(nccl_comm); */
}
#endif
...
...
Dragon/include/utils/caffemodel.h
View file @
6b82cb2
...
...
@@ -30,7 +30,7 @@ inline void LoadCaffeModel(
const
auto
&
layer_name
=
layer
.
name
();
auto
prefix
=
layer_name
+
"/param:"
;
for
(
int
j
=
0
;
j
<
layer
.
blobs_size
();
j
++
)
{
auto
tensor_name
=
prefix
+
st
d
::
to_string
(
j
);
auto
tensor_name
=
prefix
+
st
r
::
to
(
j
);
if
(
!
ws
->
HasTensor
(
tensor_name
))
{
LOG
(
WARNING
)
<<
"Tensor("
<<
tensor_name
<<
") "
...
...
Dragon/include/utils/string.h
View file @
6b82cb2
...
...
@@ -23,6 +23,11 @@ namespace dragon {
namespace
str
{
template
<
typename
T
>
inline
std
::
string
to
(
T
val
)
{
return
std
::
to_string
(
val
);
}
inline
std
::
vector
<
std
::
string
>
split
(
const
std
::
string
&
str
,
const
std
::
string
&
c
)
{
...
...
@@ -37,6 +42,12 @@ inline std::vector<std::string> split(
return
ret
;
}
inline
bool
find
(
const
std
::
string
&
str
,
const
std
::
string
&
pattern
)
{
return
str
.
find
(
pattern
)
!=
std
::
string
::
npos
;
}
inline
std
::
string
replace_first
(
const
std
::
string
&
str
,
const
std
::
string
&
pattern
,
...
...
Dragon/modules/python/py_module.cc
View file @
6b82cb2
...
...
@@ -214,13 +214,6 @@ PYBIND11_MODULE(libdragon, m) {
return
self
->
GetTensor
(
name
);
},
pybind11
::
return_value_policy
::
reference_internal
)
/*! \brief Return the filler type of a tensor */
.
def
(
"GetFillerType"
,
[](
Workspace
*
self
,
const
string
&
name
)
{
return
self
->
GetFiller
(
name
)
->
type
();
})
/* \brief Set an alias for the tensor */
.
def
(
"SetTensorAlias"
,
[](
Workspace
*
self
,
...
...
@@ -311,12 +304,14 @@ PYBIND11_MODULE(libdragon, m) {
<<
"
\n
Failed to parse the GraphDef."
;
auto
*
graph
=
self
->
CreateGraph
(
graph_def
);
if
(
verbose
)
{
// It is not a good design to print the debug string
auto
*
T
=
self
->
CreateTensor
(
"/graph_def/optimized/"
+
graph
->
name
());
if
(
T
->
count
()
>
0
)
{
auto
*
data
=
T
->
mutable_data
<
string
,
CPUContext
>
();
std
::
cout
<<
data
[
0
]
<<
std
::
endl
;
bool
could_be_serialized
=
true
;
const
auto
&
def
=
graph
->
opt_def
();
for
(
auto
&
op
:
def
.
op
())
if
(
op
.
type
()
==
"GivenTensorFill"
)
could_be_serialized
=
false
;
if
(
could_be_serialized
)
{
// It is not a good design to print the debug string
std
::
cout
<<
def
.
DebugString
()
<<
std
::
endl
;
}
}
// Return the graph name may be different from the def
...
...
Dragon/modules/python/py_proto.h
View file @
6b82cb2
...
...
@@ -72,4 +72,4 @@ void AddProtoMethods(pybind11::module& m) {
}
// namespace dragon
#endif DRAGON_PYTHON_PY_PROTO_H_
\ No newline at end of file
#endif // DRAGON_PYTHON_PY_PROTO_H_
\ No newline at end of file
Dragon/python/dragon/core/workspace.py
View file @
6b82cb2
...
...
@@ -38,22 +38,22 @@ from dragon.core import proto_utils as _proto_utils
class
TensorPool
(
object
):
"""
We apply the TensorPool
to manage the reused tensors.
"""
A wrapper
to manage the reused tensors.
Tensors with the same scope
in the pool
will be reused by turns,
which speeds up the whole system by reducing the unnecessary deconstructing
.
Tensors with the same scope will be reused by turns,
and thus, unnecessary deconstructing is reduced
.
Heuristically,
we have used 5 pools with different scopes
:
Heuristically,
five pools with different scopes are used
:
*
scope(Leaf): A P
ool to reuse leaf tensors.
*
*${LEAF}*: A p
ool to reuse leaf tensors.
*
scope(NumPy)
: A pool to reuse leaf tensors from numpy.
*
*${NUMPY}*
: A pool to reuse leaf tensors from numpy.
*
scope(Join)
: A pool to reuse RT(runtime) tensors required by forward-backward.
*
*${JOIN}*
: A pool to reuse RT(runtime) tensors required by forward-backward.
*
scope(Detach): A pool to reuse RT(runtime) tensors required by forward
only.
*
*${DETACH}*: A pool to reuse RT(runtime) tensors required by forward-pass
only.
*
scope(Reference)
: A pool to reuse reshaped tensors(sharing contents).
*
*${REFERENCE}*
: A pool to reuse reshaped tensors(sharing contents).
"""
def
__init__
(
self
):
...
...
@@ -61,6 +61,19 @@ class TensorPool(object):
self
.
_scope2keys
=
defaultdict
(
deque
)
def
get
(
self
,
scope
=
'${DETACH}'
):
"""Return a unique name under the specified scope.
Parameters
----------
scope : str, optional, default='${DETACH}'
The optional
Returns
-------
str
The unique name can be used.
"""
try
:
return
self
.
_scope2keys
[
scope
]
.
popleft
()
except
:
...
...
@@ -71,6 +84,14 @@ class TensorPool(object):
return
self
.
_scope2keys
[
scope
]
.
popleft
()
def
put
(
self
,
name
):
"""Collect a unique name.
Parameters
----------
name : str
The name to collect.
"""
if
'${POOL}'
in
name
:
scope
,
_
=
name
[
8
:]
.
split
(
'/'
)
self
.
_scope2keys
[
scope
]
.
append
(
name
)
...
...
@@ -79,13 +100,14 @@ class TensorPool(object):
class
OperatorPool
(
object
):
"""Operators whose gradients is required will hold a resource handle,
which is also called ``Anchor`` in the backend.
"""A wrapper to manage the resource handle of operators.
We apply this pool to collect the handles according to the type of operator,
as the mem size of temporal resources varies greatly.
Operators whose gradients is required will hold a resource handle.
The resource handle will be released after the gradient flow automatically.
We collect the handles according to the type of operator,
as the size of resources varies greatly.
Handle will be released after the backward-pass automatically.
"""
def
__init__
(
self
):
...
...
@@ -93,6 +115,19 @@ class OperatorPool(object):
self
.
_type2keys
=
defaultdict
(
deque
)
def
get
(
self
,
op_type
):
"""Return a unique handle according to the op type.
Parameters
----------
op_type : str
The type of the operator.
Returns
-------
str
The unique handle can be used.
"""
try
:
return
self
.
_type2keys
[
op_type
]
.
popleft
()
except
:
...
...
@@ -102,13 +137,21 @@ class OperatorPool(object):
domain
=
'Operator'
,
zero_based
=
False
))
return
self
.
_type2keys
[
op_type
]
.
popleft
()
def
put
(
self
,
op_name
):
op_type
,
_
=
op_name
[
8
:]
.
split
(
'_'
)
self
.
_type2keys
[
op_type
]
.
append
(
op_name
)
def
put
(
self
,
handle
):
"""Collect a unique handle.
Parameters
----------
name : str
The name to collect.
"""
op_type
,
_
=
handle
[
8
:]
.
split
(
'_'
)
self
.
_type2keys
[
op_type
]
.
append
(
handle
)
class
Workspace
(
_C
.
Workspace
):
"""A wrapper for the C implemented workspace.
"""A wrapper for the C
++
implemented workspace.
This class is a fusion of *Workspace*, *Pool* and *tf.Graph*.
...
...
@@ -116,20 +159,41 @@ class Workspace(_C.Workspace):
"""
def
__init__
(
self
,
name
=
''
):
"""Construct a Workspace instance.
Parameters
----------
name : str, optional, default=''
The optional workspace name.
Returns
-------
Workspace
A new workspace.
"""
super
(
Workspace
,
self
)
.
__init__
(
name
)
self
.
_ref_objects
=
[]
self
.
_collections
=
{}
self
.
tensor_pool
=
TensorPool
()
self
.
operator_pool
=
OperatorPool
()
def
get_collection_ref
(
self
,
name
):
coll_list
=
self
.
_collections
.
get
(
name
,
None
)
if
coll_list
is
None
:
coll_list
=
[]
self
.
_collections
[
name
]
=
coll_list
return
coll_list
def
get_collection
(
self
,
name
,
scope
=
None
):
"""Return the specified collection.
Parameters
----------
name : str
The key to the collection.
scope : str, optional
The optional regex keyword.
Returns
-------
list
The collection list.
"""
coll_list
=
self
.
_collections
.
get
(
name
,
None
)
if
coll_list
is
None
:
return
[]
...
...
@@ -143,13 +207,61 @@ class Workspace(_C.Workspace):
filter_coll_list
.
append
(
item
)
return
filter_coll_list
def
get_collection_ref
(
self
,
name
):
"""Return the reference of specified collection.
Parameters
----------
name : str
The key to the collection.
Returns
-------
list
The collection list.
"""
coll_list
=
self
.
_collections
.
get
(
name
,
None
)
if
coll_list
is
None
:
coll_list
=
[]
self
.
_collections
[
name
]
=
coll_list
return
coll_list
def
add_to_collection
(
self
,
name
,
value
):
"""Add the value to the specified collection.
Parameters
----------
name : str
The key to the collection.
value : object
The value object.
Returns
-------
None
"""
if
name
not
in
self
.
_collections
:
self
.
_collections
[
name
]
=
[
value
]
else
:
self
.
_collections
[
name
]
.
append
(
value
)
def
add_to_collections
(
self
,
names
,
value
):
"""Add the value to the specified collections.
Parameters
----------
name : sequence of str
The key to the collections.
value : object
The value object.
Returns
-------
None
"""
for
name
in
names
:
self
.
add_to_collection
(
name
,
value
)
...
...
@@ -246,12 +358,21 @@ def CreateGraph(graph_def):
The graph name to run.
"""
LogMetaGraph
(
graph_def
)
ExportMetaGraph
(
graph_def
)
options
=
_cfg
.
GetGlobalOptions
()
if
options
[
'log_meta_graph'
]:
print
(
graph_def
)
if
options
[
'export_meta_graph'
]:
if
not
os
.
path
.
exists
(
options
[
'export_meta_graph'
]):
try
:
os
.
makedirs
(
options
[
'export_meta_graph'
])
except
Exception
:
raise
ValueError
(
'The given prefix is invalid.'
)
path
=
os
.
path
.
join
(
options
[
'export_meta_graph'
],
graph_def
.
name
+
'.metatxt'
)
with
open
(
path
,
'w'
)
as
f
:
f
.
write
(
str
(
graph_def
))
_logging
.
info
(
'Export meta graph to: {}'
.
format
(
path
))
return
get_default_workspace
()
.
CreateGraph
(
_stringify_proto
(
graph_def
),
options
[
'log_optimized_graph'
])
_stringify_proto
(
graph_def
),
options
[
'log_optimized_graph'
])
def
RunOperator
(
op_def
,
verbose
=
False
):
...
...
@@ -332,28 +453,6 @@ def CreateFiller(filler_def):
get_default_workspace
()
.
CreateFiller
(
filler_def
)
def
GetFillerType
(
tensor
):
"""Get the filler type of specific tensor.
It is useful if you want to tag some tensors,
e.g. tag with ``numpy``, and get to initialize them lazily.
Parameters
----------
tensor : Tensor or str
The tensor to query.
Returns
-------
str
The filler type.
"""
tensor
=
_stringify_tensor
(
tensor
)
return
get_default_workspace
()
.
GetFillerType
(
tensor
)
def
GetTensorName
(
tensor
):
"""Query the name represented in current workspace.
...
...
@@ -585,54 +684,6 @@ def Backward(
)
def
LogMetaGraph
(
graph_def
):
"""Log the meta graph.
Parameters
----------
graph_def : GraphDef
The definition of meta graph.
Returns
-------
None
"""
options
=
_cfg
.
GetGlobalOptions
()
if
options
[
'log_meta_graph'
]:
print
(
graph_def
)
def
ExportMetaGraph
(
graph_def
):
"""Export the meta graph into a file under specific folder.
You can set the exporting prefix by `config.ExportMetaGraph(prefix)`_.
Parameters
----------
graph_def : GraphDef
The definition of meta graph.
Returns
-------
None
"""
options
=
_cfg
.
GetGlobalOptions
()
if
options
[
'export_meta_graph'
]:
if
not
os
.
path
.
exists
(
options
[
'export_meta_graph'
]):
try
:
os
.
makedirs
(
options
[
'export_meta_graph'
])
except
Exception
:
raise
ValueError
(
'The given prefix is invalid.'
)
path
=
os
.
path
.
join
(
options
[
'export_meta_graph'
],
graph_def
.
name
+
'.metatxt'
)
with
open
(
path
,
'w'
)
as
f
:
f
.
write
(
str
(
graph_def
))
_logging
.
info
(
'Export meta graph into: {}'
.
format
(
path
))
def
Snapshot
(
tensors
,
filename
,
...
...
@@ -663,10 +714,6 @@ def Snapshot(
-------
None
Notes
-----
"""
file_path
=
prefix
+
filename
+
suffix
...
...
@@ -709,7 +756,6 @@ def Restore(binary_file, format='pickle'):
"""
assert
os
.
path
.
exists
(
binary_file
),
\
'Binary file({}) does not exist.'
.
format
(
binary_file
)
if
format
==
'pickle'
:
try
:
state_dict
=
pickle
.
load
(
open
(
binary_file
,
'rb'
))
...
...
Dragon/python/dragon/utils/vision/blob_fetcher.py
View file @
6b82cb2
...
...
@@ -55,9 +55,9 @@ class BlobFetcher(multiprocessing.Process):
im
,
labels
=
self
.
Q_in
.
get
()
im_blob
=
numpy
.
zeros
(
shape
=
([
self
.
_batch_size
]
+
list
(
im
.
shape
)),
dtype
=
'uint8'
)
label_blob
=
numpy
.
zeros
((
self
.
_batch_size
,
len
(
labels
)),
dtype
=
'int64'
)
for
i
x
in
range
(
self
.
_batch_size
):
im_blob
[
i
x
,
:,
:,
:],
label_blob
[
ix
,
:]
=
im
,
labels
if
i
x
!=
self
.
_batch_size
-
1
:
im
,
labels
=
self
.
Q_in
.
get
()
for
i
in
range
(
self
.
_batch_size
):
im_blob
[
i
,
:,
:,
:],
label_blob
[
i
,
:]
=
im
,
labels
if
i
!=
self
.
_batch_size
-
1
:
im
,
labels
=
self
.
Q_in
.
get
()
return
im_blob
,
label_blob
def
run
(
self
):
...
...
Dragon/python/dragon/utils/vision/data_batch.py
View file @
6b82cb2
...
...
@@ -14,8 +14,8 @@ from __future__ import division
from
__future__
import
print_function
import
time
import
multiprocessing
from
multiprocessing
import
Queue
from
dragon.core
import
mpi
as
_mpi
from
dragon.core
import
logging
as
_logging
...
...
@@ -39,14 +39,10 @@ class DataBatch(object):
----------
source : str
The path of database.
multiple_nodes: boolean, optional, default=False
Whether to split data for multiple parallel nodes.
shuffle : bool, optional, default=False
Whether to shuffle the data.
num_chunks : int, optional, default=2048
The number of chunks to split.
chunk_size : int, optional, default=-1
The size(MB) of each chunk.
padding : int, optional, default=0
The zero-padding size.
fill_value : int, optional, default=127
...
...
@@ -77,13 +73,12 @@ class DataBatch(object):
"""
super
(
DataBatch
,
self
)
.
__init__
()
# Init mpi
global_rank
=
0
;
local_rank
=
0
;
group_size
=
1
global_rank
,
local_rank
,
group_size
=
0
,
0
,
1
if
_mpi
.
Is_Init
()
and
kwargs
.
get
(
'phase'
,
'TRAIN'
)
==
'TRAIN'
:
rank
,
group
=
_mpi
.
AllowParallel
()
if
rank
!=
-
1
:
# DataParallel
global_rank
=
_mpi
.
Rank
()
group_size
=
len
(
group
)
global_rank
,
group_size
=
_mpi
.
Rank
(),
len
(
group
)
for
i
,
node
in
enumerate
(
group
):
if
global_rank
==
node
:
local_rank
=
i
kwargs
[
'group_size'
]
=
group_size
...
...
@@ -109,39 +104,31 @@ class DataBatch(object):
if
kwargs
.
get
(
'crop_size'
,
0
)
>
0
and
\
kwargs
.
get
(
'phase'
,
'TRAIN'
)
==
'TRAIN'
:
self
.
_num_transformers
+=
1
self
.
_num_transformers
=
min
(
self
.
_num_transformers
,
self
.
_max_transformers
)
self
.
_num_transformers
=
min
(
self
.
_num_transformers
,
self
.
_max_transformers
)
self
.
_batch_size
=
kwargs
.
get
(
'batch_size'
,
128
)
self
.
_partition
=
kwargs
.
get
(
'partition'
,
False
)
if
self
.
_partition
:
self
.
_batch_size
=
int
(
self
.
_batch_size
/
kwargs
[
'group_size'
])
if
self
.
_partition
:
self
.
_batch_size
//=
kwargs
[
'group_size'
]
# Init queues
self
.
Q_level_1
=
multiprocessing
.
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q_level_2
=
multiprocessing
.
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q_level_3
=
multiprocessing
.
Queue
(
self
.
_prefetch
*
self
.
_num_readers
)
self
.
Q1
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q2
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q3
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
)
# Init readers
self
.
_readers
=
[]
for
i
in
range
(
self
.
_num_readers
):
self
.
_readers
.
append
(
DataReader
(
**
kwargs
))
self
.
_readers
[
-
1
]
.
Q_out
=
self
.
Q
_level_
1
self
.
_readers
[
-
1
]
.
Q_out
=
self
.
Q1
for
i
in
range
(
self
.
_num_readers
):
num_parts
=
self
.
_num_readers
part_idx
=
i
if
self
.
_readers
[
i
]
.
_multiple_nodes
or
\
self
.
_readers
[
i
]
.
_use_shuffle
:
num_parts
*=
group_size
part_idx
+=
local_rank
*
self
.
_num_readers
part_idx
,
num_parts
=
i
,
self
.
_num_readers
num_parts
*=
group_size
part_idx
+=
local_rank
*
self
.
_num_readers
self
.
_readers
[
i
]
.
_num_parts
=
num_parts
self
.
_readers
[
i
]
.
_part_idx
=
part_idx
self
.
_readers
[
i
]
.
_r
andom
_seed
+=
part_idx
self
.
_readers
[
i
]
.
_r
ng
_seed
+=
part_idx
self
.
_readers
[
i
]
.
start
()
time
.
sleep
(
0.1
)
...
...
@@ -149,9 +136,8 @@ class DataBatch(object):
self
.
_transformers
=
[]
for
i
in
range
(
self
.
_num_transformers
):
transformer
=
DataTransformer
(
**
kwargs
)
transformer
.
_random_seed
+=
(
i
+
local_rank
*
self
.
_num_transformers
)
transformer
.
Q_in
=
self
.
Q_level_1
transformer
.
Q_out
=
self
.
Q_level_2
transformer
.
_rng_seed
+=
(
i
+
local_rank
*
self
.
_num_transformers
)
transformer
.
Q_in
,
transformer
.
Q_out
=
self
.
Q1
,
self
.
Q2
transformer
.
start
()
self
.
_transformers
.
append
(
transformer
)
time
.
sleep
(
0.1
)
...
...
@@ -160,8 +146,7 @@ class DataBatch(object):
self
.
_fetchers
=
[]
for
i
in
range
(
self
.
_num_fetchers
):
fetcher
=
BlobFetcher
(
**
kwargs
)
fetcher
.
Q_in
=
self
.
Q_level_2
fetcher
.
Q_out
=
self
.
Q_level_3
fetcher
.
Q_in
,
fetcher
.
Q_out
=
self
.
Q2
,
self
.
Q3
fetcher
.
start
()
self
.
_fetchers
.
append
(
fetcher
)
time
.
sleep
(
0.1
)
...
...
@@ -189,4 +174,4 @@ class DataBatch(object):
The batch, representing data and labels respectively.
"""
return
self
.
Q_level_3
.
get
()
\ No newline at end of file
return
self
.
Q3
.
get
()
\ No newline at end of file
Dragon/python/dragon/utils/vision/data_reader.py
View file @
6b82cb2
...
...
@@ -34,28 +34,19 @@ class DataReader(multiprocessing.Process):
----------
source : str
The path of database.
multiple_nodes: boolean, optional, default=False
Whether to split data for multiple parallel nodes.
shuffle : bool, optional, default=False
Whether to shuffle the data.
num_chunks : int, optional, default=2048
The number of chunks to split.
chunk_size : int, optional, default=-1
The size(MB) of each chunk.
"""
super
(
DataReader
,
self
)
.
__init__
()
self
.
_source
=
kwargs
.
get
(
'source'
,
''
)
self
.
_multiple_nodes
=
kwargs
.
get
(
'multiple_nodes'
,
False
)
self
.
_use_shuffle
=
kwargs
.
get
(
'shuffle'
,
False
)
self
.
_use_instance_chunk
=
kwargs
.
get
(
'instance_chunk'
,
False
)
self
.
_num_chunks
=
kwargs
.
get
(
'num_chunks'
,
2048
)
self
.
_chunk_size
=
kwargs
.
get
(
'chunk_size'
,
-
1
)
self
.
_part_idx
,
self
.
_num_parts
=
0
,
1
self
.
_cur_idx
,
self
.
_cur_chunk_idx
=
0
,
0
self
.
_random_seed
=
_cfg
.
GetRandomSeed
()
self
.
_cursor
,
self
.
_chunk_cursor
=
0
,
0
self
.
_rng_seed
=
_cfg
.
GetRandomSeed
()
self
.
Q_out
=
None
self
.
daemon
=
True
...
...
@@ -70,13 +61,13 @@ class DataReader(multiprocessing.Process):
"""
return
self
.
_db
.
value
()
def
redirect
(
self
,
target
_idx
):
def
redirect
(
self
,
target
):
"""Redirect to the target position.
Parameters
----------
target
_idx
: int
The key of
instance in ``LMDB``
.
target : int
The key of
the record
.
Returns
-------
...
...
@@ -84,17 +75,17 @@ class DataReader(multiprocessing.Process):
Notes
-----
The redirection reopens the
``LMDB``
.
The redirection reopens the
database
.
You can drop caches by ``echo 3 > /proc/sys/vm/drop_caches``.
This will disturb getting stuck when
``Database Size`` >> ``RAM Size``
.
This will disturb getting stuck when
*Database Size* >> *RAM Size*
.
"""
self
.
_db
.
close
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_cur
_idx
=
target_idx
self
.
_db
.
set
(
str
(
self
.
_cur_idx
)
.
zfill
(
self
.
_zfill
))
self
.
_cur
sor
=
target
self
.
_db
.
set
(
str
(
target
)
.
zfill
(
self
.
_zfill
))
def
reset
(
self
):
"""Reset the cursor and environment.
...
...
@@ -104,21 +95,18 @@ class DataReader(multiprocessing.Process):
None
"""
if
self
.
_multiple_nodes
or
self
.
_use_shuffle
:
if
self
.
_use_shuffle
:
self
.
_perm
=
numpy
.
random
.
permutation
(
self
.
_num_shuffle_parts
)
self
.
_cur_chunk_idx
=
0
self
.
_start_idx
=
int
(
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
])
self
.
_start_idx
=
int
(
self
.
_start_idx
*
self
.
_chunk_size
)
if
self
.
_start_idx
>=
self
.
_num_entries
:
self
.
next_chunk
()
self
.
_end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_end_idx
=
min
(
self
.
_num_entries
,
self
.
_end_idx
)
if
self
.
_num_parts
>
1
or
self
.
_use_shuffle
:
self
.
_chunk_cursor
=
0
self
.
_part_idx
=
(
self
.
_part_idx
+
1
)
%
self
.
_num_parts
if
self
.
_use_shuffle
:
self
.
_perm
=
numpy
.
random
.
permutation
(
self
.
_perm_size
)
self
.
_head
=
self
.
_part_idx
*
self
.
_perm_size
+
self
.
_perm
[
self
.
_chunk_cursor
]
self
.
_tail
=
self
.
_head
*
self
.
_chunk_size
if
self
.
_head
>=
self
.
_num_entries
:
self
.
next_chunk
()
self
.
_tail
=
self
.
_head
+
self
.
_chunk_size
self
.
_tail
=
min
(
self
.
_num_entries
,
self
.
_tail
)
else
:
self
.
_start_idx
=
0
self
.
_end_idx
=
self
.
_num_entries
self
.
redirect
(
self
.
_start_idx
)
self
.
_head
,
self
.
_tail
=
0
,
self
.
_num_entries
self
.
redirect
(
self
.
_head
)
def
next_record
(
self
):
"""Step the cursor of records.
...
...
@@ -128,8 +116,8 @@ class DataReader(multiprocessing.Process):
None
"""
self
.
_cur_idx
+=
1
self
.
_db
.
next
()
self
.
_cursor
+=
1
def
next_chunk
(
self
):
"""Step the cursor of shuffling chunks.
...
...
@@ -139,16 +127,17 @@ class DataReader(multiprocessing.Process):
None
"""
self
.
_c
ur_chunk_idx
+=
1
if
self
.
_c
ur_chunk_idx
>=
self
.
_num_shuffle_parts
:
self
.
reset
()
self
.
_c
hunk_cursor
+=
1
if
self
.
_c
hunk_cursor
>=
self
.
_perm_size
:
self
.
reset
()
else
:
self
.
_start_idx
=
self
.
_part_idx
*
self
.
_num_shuffle_parts
+
self
.
_perm
[
self
.
_cur_chunk_idx
]
self
.
_start_idx
=
self
.
_start_idx
*
self
.
_chunk_size
if
self
.
_start_idx
>=
self
.
_num_entries
:
self
.
next_chunk
()
self
.
_head
=
self
.
_part_idx
*
self
.
_perm_size
+
self
.
_perm
[
self
.
_chunk_cursor
]
self
.
_head
=
self
.
_head
*
self
.
_chunk_size
if
self
.
_head
>=
self
.
_num_entries
:
self
.
next_chunk
()
else
:
self
.
_
end_idx
=
self
.
_start_idx
+
self
.
_chunk_size
self
.
_
end_idx
=
min
(
self
.
_num_entries
,
self
.
_end_idx
)
self
.
redirect
(
self
.
_
start_idx
)
self
.
_
tail
=
self
.
_head
+
self
.
_chunk_size
self
.
_
tail
=
min
(
self
.
_num_entries
,
self
.
_tail
)
self
.
redirect
(
self
.
_
head
)
def
run
(
self
):
"""Start the process.
...
...
@@ -158,44 +147,42 @@ class DataReader(multiprocessing.Process):
None
"""
#
f
ix seed
numpy
.
random
.
seed
(
self
.
_r
andom
_seed
)
#
F
ix seed
numpy
.
random
.
seed
(
self
.
_r
ng
_seed
)
#
i
nit db
#
I
nit db
self
.
_db
=
_db
.
LMDB
()
self
.
_db
.
open
(
self
.
_source
)
self
.
_zfill
=
self
.
_db
.
zfill
()
self
.
_num_entries
=
self
.
_db
.
num_entries
()
self
.
_epoch_size
=
int
(
self
.
_num_entries
/
self
.
_num_parts
+
1
)
epoch_size
=
self
.
_num_entries
//
self
.
_num_parts
+
1
if
self
.
_use_shuffle
:
if
self
.
_chunk_size
==
1
:
# Each chunk has at most 1 record (Naive Shuffle)
self
.
_chunk_size
,
self
.
_num_shuffle_parts
=
\
1
,
int
(
self
.
_num_entries
/
self
.
_num_parts
)
+
1
if
self
.
_num_chunks
<=
0
:
# Each chunk has at most 1 record (Record-Wise)
self
.
_chunk_size
,
self
.
_perm_size
=
1
,
epoch_size
else
:
if
self
.
_use_shuffle
and
self
.
_chunk_size
==
-
1
:
# Search a optimal chunk size by chunks (Chunk Shuffle)
max_chunk_size
=
self
.
_db
.
_total_size
/
((
self
.
_num_chunks
*
(
1
<<
20
)))
min_chunk_size
=
1
while
min_chunk_size
*
2
<
max_chunk_size
:
min_chunk_size
*=
2
self
.
_chunk_size
=
min_chunk_size
self
.
_num_shuffle_parts
=
int
(
math
.
ceil
(
self
.
_db
.
_total_size
*
1.1
/
(
self
.
_num_parts
*
self
.
_chunk_size
<<
20
)))
self
.
_chunk_size
=
int
(
self
.
_num_entries
/
self
.
_num_shuffle_parts
/
self
.
_num_parts
+
1
)
limit
=
(
self
.
_num_parts
-
0.5
)
*
self
.
_num_shuffle_parts
*
self
.
_chunk_size
if
self
.
_num_entries
<=
limit
:
# Roll back to naive shuffle
self
.
_chunk_size
,
self
.
_num_shuffle_parts
=
\
1
,
int
(
self
.
_num_entries
/
self
.
_num_parts
)
+
1
# Search a optimal chunk size (Chunk-Wise)
min_size
,
max_size
=
\
1
,
self
.
_db
.
_total_size
*
1.0
\
/
((
self
.
_num_chunks
*
(
1
<<
20
)))
while
min_size
*
2
<
max_size
:
min_size
*=
2
self
.
_perm_size
=
int
(
math
.
ceil
(
self
.
_db
.
_total_size
*
1.1
/
(
self
.
_num_parts
*
min_size
<<
20
)))
self
.
_chunk_size
=
int
(
self
.
_num_entries
*
1.0
/
(
self
.
_perm_size
*
self
.
_num_parts
)
+
1
)
limit
=
(
self
.
_num_parts
-
0.5
)
*
self
.
_perm_size
*
self
.
_chunk_size
if
self
.
_num_entries
<=
limit
:
# Roll back to Record-Wise shuffle
self
.
_chunk_size
,
self
.
_perm_size
=
1
,
epoch_size
else
:
# Each chunk has at most K records
# Note that if ``shuffle`` and ``multiple_nodes`` are all *False*,
# ``chunk_size`` and ``num_shuffle_parts`` are meaningless
self
.
_chunk_size
=
int
(
self
.
_num_entries
/
self
.
_num_parts
)
+
1
self
.
_num_shuffle_parts
=
1
# One chunk has at most K records
self
.
_chunk_size
,
self
.
_perm_size
=
epoch_size
,
1
self
.
_perm
=
numpy
.
arange
(
self
.
_
num_shuffle_parts
)
self
.
_perm
=
numpy
.
arange
(
self
.
_
perm_size
)
# Init env
self
.
reset
()
...
...
@@ -204,7 +191,7 @@ class DataReader(multiprocessing.Process):
while
True
:
self
.
Q_out
.
put
(
self
.
element
())
self
.
next_record
()
if
self
.
_cur
_idx
>=
self
.
_end_idx
:
if
self
.
_
multiple_nodes
or
\
self
.
_use_shuffle
:
self
.
next_chunk
()
if
self
.
_cur
sor
>=
self
.
_tail
:
if
self
.
_
num_parts
>
1
or
self
.
_use_shuffle
:
self
.
next_chunk
()
else
:
self
.
reset
()
\ No newline at end of file
Dragon/python/dragon/utils/vision/data_transformer.py
View file @
6b82cb2
...
...
@@ -74,7 +74,7 @@ class DataTransformer(multiprocessing.Process):
self
.
_max_rand_scale
=
kwargs
.
get
(
'max_random_scale'
,
1.0
)
self
.
_force_color
=
kwargs
.
get
(
'force_color'
,
False
)
self
.
_phase
=
kwargs
.
get
(
'phase'
,
'TRAIN'
)
self
.
_r
andom
_seed
=
_cfg
.
GetRandomSeed
()
self
.
_r
ng
_seed
=
_cfg
.
GetRandomSeed
()
self
.
Q_in
=
self
.
Q_out
=
None
self
.
daemon
=
True
...
...
@@ -186,7 +186,7 @@ class DataTransformer(multiprocessing.Process):
"""
# Fix the random seed
numpy
.
random
.
seed
(
self
.
_r
andom
_seed
)
numpy
.
random
.
seed
(
self
.
_r
ng
_seed
)
# Run!
while
True
:
...
...
Dragon/python/dragon/vm/onnx/helper.py
View file @
6b82cb2
...
...
@@ -73,7 +73,7 @@ def fetch_initializer(initializer):
def
fetch_argument
(
op_def
,
desc
,
ws
):
if
sys
.
version_info
>=
(
3
,
0
):
desc
=
desc
.
decode
(
'utf-8'
)
desc
=
desc
.
replace
(
'${
ANCHOR
}'
,
op_def
.
name
)
desc
=
desc
.
replace
(
'${
HANDLE
}'
,
op_def
.
name
)
argument_value
=
ws
.
FetchTensor
(
desc
)
if
argument_value
.
size
==
1
:
return
argument_value
.
flatten
()[
0
]
...
...
Dragon/python/dragon/vm/torch/module.py
View file @
6b82cb2
...
...
@@ -24,6 +24,7 @@ import dragon
import
warnings
from
collections
import
OrderedDict
from
dragon
import
config
as
_cfg
from
dragon.core
import
scope
as
_scope
from
dragon.core
import
logging
as
_logging
from
dragon.core
import
proto_utils
as
_proto_utils
...
...
@@ -310,6 +311,7 @@ class Module(object):
return
self
.
_module_key
def
_gen_module_def
(
self
):
rng_seed
=
_cfg
.
GetGlobalOptions
()[
'random_seed'
]
self
.
_module_def
=
\
_proto_utils
.
MakeCXXOperatorDef
(
name
=
'runtime'
,
...
...
@@ -318,7 +320,9 @@ class Module(object):
device_option
=
_proto_utils
.
GetDeviceOption
(
self
.
_device
.
type
,
self
.
_device
.
index
),
self
.
_device
.
index
,
rng_seed
=
rng_seed
,
),
**
self
.
op_meta
[
'arguments'
]
)
...
...
Dragon/python/dragon/vm/torch/ops/modules/array.py
View file @
6b82cb2
...
...
@@ -36,10 +36,10 @@ class Indexing(BaseModule):
'op_type'
:
'Crop'
,
'arguments'
:
{
'starts_desc'
:
[
'${{
ANCHOR
}}/starts[{}]'
.
format
(
n
)
'${{
HANDLE
}}/starts[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
nstarts
)],
'sizes_desc'
:
[
'${{
ANCHOR
}}/sizes[{}]'
.
format
(
n
)
'${{
HANDLE
}}/sizes[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
nsizes
)],
},
}
...
...
@@ -231,7 +231,7 @@ class Reshape(BaseModule):
'op_type'
:
'Reshape'
,
'arguments'
:
{
'dims_desc'
:
[
'${{
ANCHOR
}}/dims[{}]'
.
format
(
n
)
'${{
HANDLE
}}/dims[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
ndim
)
],
},
...
...
@@ -298,7 +298,7 @@ class Permute(BaseModule):
self
.
op_meta
=
{
'op_type'
:
'Transpose'
,
'arguments'
:
{
'perm_desc'
:
[
'${{
ANCHOR
}}/perm[{}]'
.
format
(
n
)
'perm_desc'
:
[
'${{
HANDLE
}}/perm[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
nperm
)],
},
}
...
...
@@ -326,7 +326,7 @@ class Repeat(BaseModule):
'op_type'
:
'Tile'
,
'arguments'
:
{
'multiples_desc'
:
[
'${{
ANCHOR
}}/multiples[{}]'
.
format
(
n
)
'${{
HANDLE
}}/multiples[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
ntimes
)
],
},
...
...
Dragon/python/dragon/vm/torch/ops/modules/control_flow.py
View file @
6b82cb2
...
...
@@ -66,10 +66,10 @@ class Assign(BaseModule):
'op_type'
:
'Assign'
,
'arguments'
:
{
'starts_desc'
:
[
'${{
ANCHOR
}}/starts[{}]'
.
format
(
n
)
'${{
HANDLE
}}/starts[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
nstarts
)],
'sizes_desc'
:
[
'${{
ANCHOR
}}/sizes[{}]'
.
format
(
n
)
'${{
HANDLE
}}/sizes[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
nsizes
)],
},
}
...
...
Dragon/python/dragon/vm/torch/ops/modules/init.py
View file @
6b82cb2
...
...
@@ -45,7 +45,7 @@ class Fill(_InitModule):
'dtype'
:
self
.
dtype
,
'value'
:
float
(
self
.
value
),
'dims_desc'
:
[
'${{
ANCHOR
}}/dims[{}]'
.
format
(
n
)
'${{
HANDLE
}}/dims[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
ndim
)
],
},
...
...
@@ -67,7 +67,7 @@ class RandomNormal(_InitModule):
'mean'
:
float
(
self
.
mean
),
'std'
:
float
(
self
.
std
),
'dims_desc'
:
[
'${{
ANCHOR
}}/dims[{}]'
.
format
(
n
)
'${{
HANDLE
}}/dims[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
ndim
)
],
},
...
...
@@ -89,7 +89,7 @@ class RandomUniform(_InitModule):
'low'
:
float
(
self
.
low
),
'high'
:
float
(
self
.
high
),
'dims_desc'
:
[
'${{
ANCHOR
}}/dims[{}]'
.
format
(
n
)
'${{
HANDLE
}}/dims[{}]'
.
format
(
n
)
for
n
in
range
(
self
.
ndim
)
],
},
...
...
Dragon/python/dragon/vm/torch/ops/modules/vision.py
View file @
6b82cb2
...
...
@@ -32,7 +32,7 @@ class Resize2d(BaseModule):
'fx'
:
self
.
fx
,
'fy'
:
self
.
fy
,
'data_format'
:
'NCHW'
,
'dsize_desc'
:
[
'${{
ANCHOR
}}/dsize[{}]'
.
format
(
n
)
'${{
HANDLE
}}/dsize[{}]'
.
format
(
n
)
for
n
in
range
(
2
)
],
},
...
...
Dragon/python/dragon/vm/torch/utils/data/blob_fetcher.py
View file @
6b82cb2
...
...
@@ -28,19 +28,18 @@ class BlobFetcher(Process):
Parameters
----------
batch_size : int
The size of a
training
batch.
partition : bool
ean
Whether to partition batch
. Default is ``False``
.
prefetch : int
The prefetch count.
Default is ``5``.
batch_size : int
, optional, default=128
The size of a
mini-
batch.
partition : bool
, optional, default=False
Whether to partition batch
for parallelism
.
prefetch : int
, optional, default=5
The prefetch count.
"""
super
(
BlobFetcher
,
self
)
.
__init__
()
self
.
_batch_size
=
kwargs
.
get
(
'batch_size'
,
100
)
self
.
_partition
=
kwargs
.
get
(
'partition'
,
False
)
if
self
.
_partition
:
self
.
_batch_size
=
int
(
self
.
_batch_size
/
kwargs
[
'group_size'
])
if
self
.
_partition
:
self
.
_batch_size
//=
kwargs
[
'group_size'
]
self
.
Q_in
=
self
.
Q_out
=
None
self
.
daemon
=
True
...
...
@@ -53,15 +52,12 @@ class BlobFetcher(Process):
The blob of image and labels.
"""
# fill blobs
im
,
labels
=
self
.
Q_in
.
get
()
im_blob
=
np
.
zeros
(
shape
=
([
self
.
_batch_size
]
+
list
(
im
.
shape
)),
dtype
=
im
.
dtype
)
label_blob
=
np
.
zeros
((
self
.
_batch_size
,
len
(
labels
)),
dtype
=
np
.
int64
)
for
ix
in
range
(
0
,
self
.
_batch_size
):
im_blob
[
ix
,
:,
:,
:],
label_blob
[
ix
,
:]
=
im
,
labels
if
ix
!=
self
.
_batch_size
-
1
:
im
,
labels
=
self
.
Q_in
.
get
()
# mean subtraction & numerical scale
for
i
in
range
(
0
,
self
.
_batch_size
):
im_blob
[
i
,
:,
:,
:],
label_blob
[
i
,
:]
=
im
,
labels
if
i
!=
self
.
_batch_size
-
1
:
im
,
labels
=
self
.
Q_in
.
get
()
im_blob
=
im_blob
.
astype
(
np
.
float32
)
return
im_blob
,
label_blob
...
...
@@ -73,5 +69,4 @@ class BlobFetcher(Process):
None
"""
while
True
:
self
.
Q_out
.
put
(
self
.
get
())
\ No newline at end of file
while
True
:
self
.
Q_out
.
put
(
self
.
get
())
\ No newline at end of file
Dragon/python/dragon/vm/torch/utils/data/data_batch.py
View file @
6b82cb2
...
...
@@ -17,8 +17,8 @@ import time
import
pprint
from
multiprocessing
import
Queue
import
dragon.core.mpi
as
mpi
import
dragon.core.logging
as
logging
from
dragon.core
import
mpi
as
_
mpi
from
dragon.core
import
logging
as
_
logging
from
dragon.utils.vision
import
DataReader
from
.data_transformer
import
DataTransformer
...
...
@@ -39,52 +39,48 @@ class DataBatch(object):
----------
source : str
The path of database.
multiple_nodes: boolean
Whether to split data for multiple parallel nodes. Default is ``False``.
shuffle : boolean
Whether to shuffle the data. Default is ``False``.
num_chunks : int
The number of chunks to split. Default is ``2048``.
chunk_size : int
The size(MB) of each chunk. Default is -1 (Refer ``num_chunks``).
mean_values : list
The mean value of each image channel.
scale : float
The scale performed after mean subtraction. Default is ``1.0``.
padding : int
The zero-padding size. Default is ``0`` (Disabled).
fill_value : int
The value to fill when padding is valid. Default is ``127``.
crop_size : int
The crop size. Default is ``0`` (Disabled).
mirror : boolean
Whether to flip(horizontally) images. Default is ``False``.
color_augmentation : boolean
Whether to distort colors. Default is ``False``.
min_random_scale : float
The min scale of the input images. Default is ``1.0``.
max_random_scale : float
The max scale of the input images. Default is ``1.0``.
force_color : boolean
Set to duplicate channels for gray. Default is ``False``.
phase : str
The phase of this operator, ``TRAIN`` or ``TEST``. Default is ``TRAIN``.
batch_size : int
The size of a training batch.
partition : boolean
Whether to partition batch. Default is ``False``.
prefetch : int
The prefetch count. Default is ``5``.
multiple_nodes: boolean, optional, default=False
Whether to split data for multiple parallel nodes.
shuffle : bool, optional, default=False
Whether to shuffle the data.
num_chunks : int, optional, default=2048
The number of chunks to split.
padding : int, optional, default=0
The zero-padding size.
fill_value : int, optional, default=127
The value to fill when padding is valid.
crop_size : int, optional, default=0
The cropping size.
cutout_size : int, optional, default=0
The square size to cutout.
mirror : bool, optional, default=False
Whether to mirror(flip horizontally) images.
color_augmentation : bool, optional, default=False
Whether to use color distortion.1
min_random_scale : float, optional, default=1.
The min scale of the input images.
max_random_scale : float, optional, default=1.
The max scale of the input images.
force_gray : bool, optional, default=False
Set not to duplicate channel for gray.
phase : {'TRAIN', 'TEST'}, optional
The optional running phase.
batch_size : int, optional, default=128
The size of a mini-batch.
partition : bool, optional, default=False
Whether to partition batch for parallelism.
prefetch : int, optional, default=5
The prefetch count.
"""
super
(
DataBatch
,
self
)
.
__init__
()
#
i
nit mpi
global_rank
=
0
;
local_rank
=
0
;
group_size
=
1
if
mpi
.
Is_Init
():
idx
,
group
=
mpi
.
AllowParallel
()
if
idx
!=
-
1
:
# data parallel
global_rank
=
mpi
.
Rank
()
g
roup_size
=
len
(
group
)
#
I
nit mpi
global_rank
,
local_rank
,
group_size
=
0
,
0
,
1
if
_mpi
.
Is_Init
()
and
kwargs
.
get
(
'phase'
,
'TRAIN'
)
==
'TRAIN'
:
rank
,
group
=
_mpi
.
AllowParallel
()
if
rank
!=
-
1
:
# DataParallel
g
lobal_rank
,
group_size
=
_mpi
.
Rank
(),
len
(
group
)
for
i
,
node
in
enumerate
(
group
):
if
global_rank
==
node
:
local_rank
=
i
kwargs
[
'group_size'
]
=
group_size
...
...
@@ -106,73 +102,66 @@ class DataBatch(object):
if
kwargs
.
get
(
'max_random_scale'
,
1.0
)
-
\
kwargs
.
get
(
'min_random_scale'
,
1.0
)
!=
0
:
self
.
_num_transformers
+=
1
self
.
_num_transformers
=
min
(
self
.
_num_transformers
,
self
.
_max_transformers
)
self
.
_num_transformers
=
min
(
self
.
_num_transformers
,
self
.
_max_transformers
)
self
.
_batch_size
=
kwargs
.
get
(
'batch_size'
,
1
00
)
self
.
_batch_size
=
kwargs
.
get
(
'batch_size'
,
1
28
)
self
.
_partition
=
kwargs
.
get
(
'partition'
,
False
)
if
self
.
_partition
:
self
.
_batch_size
=
int
(
self
.
_batch_size
/
kwargs
[
'group_size'
])
if
self
.
_partition
:
self
.
_batch_size
//=
kwargs
[
'group_size'
]
# init queues
self
.
Q
_level_
1
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q
_level_
2
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q
_level_
3
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
)
self
.
Q1
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q2
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
*
self
.
_batch_size
)
self
.
Q3
=
Queue
(
self
.
_prefetch
*
self
.
_num_readers
)
# init readers
self
.
_readers
=
[]
for
i
in
range
(
self
.
_num_readers
):
self
.
_readers
.
append
(
DataReader
(
**
kwargs
))
self
.
_readers
[
-
1
]
.
Q_out
=
self
.
Q
_level_
1
self
.
_readers
[
-
1
]
.
Q_out
=
self
.
Q1
for
i
in
range
(
self
.
_num_readers
):
num_parts
=
self
.
_num_readers
part_idx
=
i
if
self
.
_readers
[
i
]
.
_multiple_nodes
or
\
self
.
_readers
[
i
]
.
_use_shuffle
:
part_idx
,
num_parts
=
i
,
self
.
_num_readers
if
self
.
_readers
[
i
]
.
_multi_nodes
or
\
self
.
_readers
[
i
]
.
_use_shuffle
:
num_parts
*=
group_size
part_idx
+=
local_rank
*
self
.
_num_readers
self
.
_readers
[
i
]
.
_num_parts
=
num_parts
self
.
_readers
[
i
]
.
_part_idx
=
part_idx
self
.
_readers
[
i
]
.
_r
andom
_seed
+=
part_idx
self
.
_readers
[
i
]
.
_r
ng
_seed
+=
part_idx
self
.
_readers
[
i
]
.
start
()
time
.
sleep
(
0.1
)
#
i
nit transformers
#
I
nit transformers
self
.
_transformers
=
[]
for
i
in
range
(
self
.
_num_transformers
):
transformer
=
DataTransformer
(
**
kwargs
)
transformer
.
_random_seed
+=
(
i
+
local_rank
*
self
.
_num_transformers
)
transformer
.
Q_in
=
self
.
Q_level_1
transformer
.
Q_out
=
self
.
Q_level_2
transformer
.
_rng_seed
+=
(
i
+
local_rank
*
self
.
_num_transformers
)
transformer
.
Q_in
,
transformer
.
Q_out
=
self
.
Q1
,
self
.
Q2
transformer
.
start
()
self
.
_transformers
.
append
(
transformer
)
time
.
sleep
(
0.1
)
#
i
nit blob fetchers
#
I
nit blob fetchers
self
.
_fetchers
=
[]
for
i
in
range
(
self
.
_num_fetchers
):
fetcher
=
BlobFetcher
(
**
kwargs
)
fetcher
.
Q_in
=
self
.
Q_level_2
fetcher
.
Q_out
=
self
.
Q_level_3
fetcher
.
Q_in
,
fetcher
.
Q_out
=
self
.
Q2
,
self
.
Q3
fetcher
.
start
()
self
.
_fetchers
.
append
(
fetcher
)
time
.
sleep
(
0.1
)
# prevent to echo multiple nodes
if
local_rank
==
0
:
self
.
echo
()
def
cleanup
():
def
terminate
(
processes
):
for
process
in
processes
:
process
.
terminate
()
process
.
join
()
terminate
(
self
.
_fetchers
)
if
local_rank
==
0
:
logging
.
info
(
'Terminating BlobFetcher .....
.'
)
if
local_rank
==
0
:
_logging
.
info
(
'Terminate BlobFetcher
.'
)
terminate
(
self
.
_transformers
)
if
local_rank
==
0
:
logging
.
info
(
'Terminating DataTransformer .....
.'
)
if
local_rank
==
0
:
_logging
.
info
(
'Terminate DataTransformer
.'
)
terminate
(
self
.
_readers
)
if
local_rank
==
0
:
logging
.
info
(
'Terminating DataReader.....
.'
)
if
local_rank
==
0
:
_logging
.
info
(
'Terminate DataReader
.'
)
import
atexit
atexit
.
register
(
cleanup
)
...
...
@@ -185,22 +174,4 @@ class DataBatch(object):
The batch, representing data and labels respectively.
"""
return
self
.
Q_level_3
.
get
()
def
echo
(
self
):
"""Print I/O Information.
Returns
-------
None
"""
print
(
'---------------------------------------------------------'
)
print
(
'BatchFetcher({} Threads), Using config:'
.
format
(
self
.
_num_readers
+
self
.
_num_transformers
+
self
.
_num_fetchers
))
params
=
{
'queue_size'
:
self
.
_prefetch
,
'n_readers'
:
self
.
_num_readers
,
'n_transformers'
:
self
.
_num_transformers
,
'n_fetchers'
:
self
.
_num_fetchers
}
pprint
.
pprint
(
params
)
print
(
'---------------------------------------------------------'
)
return
self
.
Q3
.
get
()
\ No newline at end of file
Dragon/python/dragon/vm/torch/utils/data/data_transformer.py
View file @
6b82cb2
...
...
@@ -13,9 +13,8 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
numpy.random
as
npr
from
multiprocessing
import
Process
import
numpy
import
multiprocessing
import
dragon.config
as
config
import
dragon.vm.caffe.proto.caffe_pb2
as
pb
...
...
@@ -26,7 +25,7 @@ except ImportError as e:
print
(
'Failed to import cv2. Error: {0}'
.
format
(
str
(
e
)))
class
DataTransformer
(
Process
):
class
DataTransformer
(
multiprocessing
.
Process
):
"""DataTransformer is deployed to queue transformed images from `DataReader`_.
Nearly all common image augmentation methods are supported.
...
...
@@ -37,11 +36,11 @@ class DataTransformer(Process):
Parameters
----------
transform : lambda
transform : lambda
, optional
The transforms.
color_space :
str
color_space :
{'RGB', 'BGR'}, optional
The color space.
pack : boolean
pack : boolean
, optional, default=False
Pack the images automatically.
"""
...
...
@@ -49,7 +48,7 @@ class DataTransformer(Process):
self
.
transform
=
transform
self
.
color_space
=
color_space
self
.
pack
=
pack
self
.
_r
andom
_seed
=
config
.
GetRandomSeed
()
self
.
_r
ng
_seed
=
config
.
GetRandomSeed
()
self
.
Q_in
=
self
.
Q_out
=
None
self
.
daemon
=
True
...
...
@@ -70,7 +69,7 @@ class DataTransformer(Process):
# Decode
datum
=
pb
.
Datum
()
datum
.
ParseFromString
(
serialized
)
im
=
n
p
.
fromstring
(
datum
.
data
,
np
.
uint8
)
im
=
n
umpy
.
fromstring
(
datum
.
data
,
numpy
.
uint8
)
if
datum
.
encoded
is
True
:
im
=
cv2
.
imdecode
(
im
,
-
1
)
else
:
...
...
@@ -94,7 +93,7 @@ class DataTransformer(Process):
None
"""
n
pr
.
seed
(
self
.
_random
_seed
)
n
umpy
.
random
.
seed
(
self
.
_rng
_seed
)
while
True
:
serialized
=
self
.
Q_in
.
get
()
im
,
label
=
self
.
get
(
serialized
)
...
...
@@ -103,5 +102,5 @@ class DataTransformer(Process):
self
.
Q_out
.
put
((
im
[
ix
],
label
))
else
:
if
len
(
im
.
shape
)
==
3
and
self
.
pack
:
im
=
n
p
.
expand_dims
(
im
,
axis
=
0
)
im
=
n
umpy
.
expand_dims
(
im
,
axis
=
0
)
self
.
Q_out
.
put
((
im
,
label
))
\ No newline at end of file
Dragon/python/dragon/vm/torch/utils/data/dataloader.py
View file @
6b82cb2
...
...
@@ -21,7 +21,7 @@ class _DataLoaderIter(object):
self
.
loader
=
loader
def
__len__
(
self
):
return
len
(
self
.
loader
.
batch
.
Q
_level_
3
.
qsize
())
return
len
(
self
.
loader
.
batch
.
Q3
.
qsize
())
def
__next__
(
self
):
return
self
.
loader
.
batch
.
get
()
...
...
@@ -33,28 +33,28 @@ class _DataLoaderIter(object):
class
DataLoader
(
object
):
def
__init__
(
self
,
dataset
,
batch_size
=
1
,
shuffle
=
False
,
partition
=
False
,
multiple_nodes
=
False
,
num_chunks
=
2048
,
chunk_size
=-
1
):
def
__init__
(
self
,
dataset
,
batch_size
=
1
,
shuffle
=
False
,
num_chunks
=
2048
,
phase
=
'TRAIN'
,
):
"""A MPI-Aware DataLoader. Forked from ``dragon.utils.vision``.
Parameters
----------
dataset : torch.utils.data.dataset.Dataset
The dataset.
batch_size : int
The batch size.
Divided by n mpi-nodes if ``partition`` is True.
shuffle : boolean
batch_size : int
, optional, default=1
The batch size.
shuffle : boolean
, optional, default=False
Whether to shuffle the data.
partition : boolean
Whether to partition batch. Default is ``False``.
multiple_nodes: boolean
Whether to split data for multiple parallel nodes.
num_chunks : int
The number of chunks to split. Default is ``2048``.
chunk_size : int
The size(MB) of each chunk. Default is -1 (Refer ``num_chunks``).
num_chunks : int, optional, default=2048
The number of chunks to split.
phase : {'TRAIN', 'TEST'}, optional
The optional running phase.
"""
self
.
dataset
=
dataset
...
...
@@ -65,12 +65,10 @@ class DataLoader(object):
n_transformers
=
dataset
.
transform
.
n_transformers
self
.
batch
=
_Batch
(
**
{
'source'
:
dataset
.
database
,
'multiple_nodes'
:
multiple_nodes
,
'shuffle'
:
shuffle
,
'num_chunks'
:
num_chunks
,
'
chunk_size'
:
chunk_siz
e
,
'
phase'
:
phas
e
,
'batch_size'
:
batch_size
,
'partition'
:
partition
,
'transform'
:
dataset
.
transform
,
'color_space'
:
dataset
.
color_space
,
'num_transformers'
:
n_transformers
,
...
...
@@ -80,7 +78,7 @@ class DataLoader(object):
return
_DataLoaderIter
(
self
)
def
__len__
(
self
):
return
self
.
batch
.
Q
_level_
3
.
qsize
()
return
self
.
batch
.
Q3
.
qsize
()
def
next
(
self
):
return
self
.
batch
.
get
()
...
...
Dragon/src/core/graph.cc
View file @
6b82cb2
...
...
@@ -8,59 +8,57 @@ namespace dragon {
/* Default constructor of <GraphBase> */
GraphBase
::
GraphBase
(
const
GraphDef
&
def
,
Workspace
*
ws
)
:
name_
(
def
.
name
()),
ws_
(
ws
)
{
for
(
auto
arg
:
def
.
arg
())
{
:
def_
(
def
),
ws_
(
ws
),
name_
(
def
.
name
()),
phase_
(
"TEST"
)
{
// Scan the defined arguments
for
(
auto
&
arg
:
def_
.
arg
())
{
CHECK_GT
(
arg
.
name
().
size
(),
0
);
CHECK_EQ
(
args_
.
count
(
arg
.
name
()),
0
);
args_
[
arg
.
name
()]
=
arg
;
args_
[
arg
.
name
()]
=
&
arg
;
if
(
arg
.
name
()
==
"phase"
)
phase_
=
arg
.
s
();
}
Set
<
string
>
known_tensors
;
// Topo-check for a graph
// Collect outputs
Set
<
string
>
outputs
;
for
(
const
auto
&
op
:
def
.
op
())
{
// Check inputs
for
(
const
auto
&
in
:
op
.
input
())
CHECK
(
known_tensor
s
.
count
(
in
)
||
ws_
->
HasTensor
(
in
))
CHECK
(
output
s
.
count
(
in
)
||
ws_
->
HasTensor
(
in
))
<<
"
\n
Input: "
<<
in
<<
" for op: "
<<
op
.
name
()
<<
" is unknown."
;
// Add outputs
for
(
const
auto
&
out
:
op
.
output
())
known_tensors
.
insert
(
out
);
for
(
const
auto
&
out
:
op
.
output
())
outputs
.
insert
(
out
);
}
// Check
for all solving
targets
Set
<
string
>
objective_
targets
;
// Check targets
Set
<
string
>
targets
;
for
(
const
auto
&
target
:
def
.
output
())
{
CHECK
(
known_tensors
.
count
(
target
)
||
ws_
->
HasTensor
(
target
))
CHECK
(
outputs
.
count
(
target
)
||
ws_
->
HasTensor
(
target
))
<<
"
\n
Target: "
<<
target
<<
" does not exist in
computional
graph."
;
objective_
targets
.
insert
(
target
);
<<
" does not exist in
the
graph."
;
targets
.
insert
(
target
);
}
// Check
for all
gradients
// Check gradients
for
(
const
auto
&
gradient
:
def
.
gradient
())
{
const
auto
&
cost
=
gradient
.
cost
();
const
auto
&
wrt
=
gradient
.
wrt
();
CHECK
(
known_tensor
s
.
count
(
cost
)
||
ws_
->
HasTensor
(
cost
))
CHECK
(
output
s
.
count
(
cost
)
||
ws_
->
HasTensor
(
cost
))
<<
"
\n
Target: "
<<
cost
<<
"
_grad does not exist in computional
graph."
;
CHECK
(
known_tensor
s
.
count
(
wrt
)
||
ws_
->
HasTensor
(
wrt
))
<<
"
does not exist in the
graph."
;
CHECK
(
output
s
.
count
(
wrt
)
||
ws_
->
HasTensor
(
wrt
))
<<
"
\n
Target: "
<<
wrt
<<
"_grad does not exist in computional graph."
;
CHECK_GT
(
objective_targets
.
count
(
cost
),
0
)
<<
"
\n
To solve d("
<<
cost
<<
")/d("
<<
wrt
<<
"), "
<<
"must set "
<<
cost
<<
"
\n
as a objective tensor to solve before derivating it."
;
<<
"does not exist in the graph."
;
CHECK_GT
(
targets
.
count
(
cost
),
0
)
<<
"
\n
To solve d("
<<
cost
<<
")/d("
<<
wrt
<<
"),
\n
"
<<
cost
<<
" should be set as a target."
;
}
}
/* Create a graph from the optimized def */
bool
Graph
::
Create
(
const
GraphDef
&
def
,
Workspace
*
ws
)
{
this
->
opt_def_
=
def
;
// Store for debugging
bool
has_device_option
=
def
.
has_device_option
();
for
(
int
i
=
0
;
i
<
def
.
op_size
();
i
++
)
{
OperatorDef
op_def
(
def
.
op
(
i
));
auto
op_def
(
def
.
op
(
i
));
LOG
(
DEBUG
)
<<
"Create Operator "
<<
op_def
.
name
()
<<
": "
<<
op_def
.
type
();
// Inherit device option if necessary
...
...
@@ -75,8 +73,7 @@ bool Graph::Create(const GraphDef& def, Workspace* ws) {
arg
.
set_name
(
"do_sync"
);
arg
.
set_i
(
1
);
op_def
.
add_arg
()
->
CopyFrom
(
arg
);
}
OperatorBase
*
op
=
NewOperator
(
op_def
,
ws
);
ops_
.
push_back
(
op
);
ops_
.
push_back
(
NewOperator
(
op_def
,
ws
));
}
return
true
;
}
...
...
@@ -89,14 +86,14 @@ Graph::Graph(const GraphDef& def, Workspace* ws)
GraphDef
opt_def
=
def
;
GraphOptimizer
graph_optim
(
ws
);
GraphGradientMaker
gradient_maker
;
Map
<
string
,
vec32_t
>
subgraph_indices
;
Map
<
string
,
vec32_t
>
subgraph_indices
;
int
opt
=
3
;
// defaults: O3
if
(
this
->
args_
.
count
(
"optimization_level"
))
opt
=
this
->
args_
[
"optimization_level"
]
.
i
();
if
(
args
()
.
count
(
"optimization_level"
))
opt
=
arg
(
"optimization_level"
)
.
i
();
if
(
opt
>=
1
)
opt_def
=
graph_optim
.
PruneNodes
(
def
);
if
(
opt
>=
2
)
opt_def
=
graph_optim
.
AddInplace
(
opt_def
);
if
(
opt
>=
3
)
{
if
(
this
->
args_
[
"phase"
].
s
()
==
"TRAIN"
)
{
if
(
phase
()
==
"TRAIN"
)
{
opt_def
=
graph_optim
.
MirrorStage
(
opt_def
,
subgraph_indices
);
opt_def
=
gradient_maker
.
Share
(
opt_def
);
...
...
@@ -105,23 +102,10 @@ Graph::Graph(const GraphDef& def, Workspace* ws)
}
}
// Try to store the final graph as a tensor for visualization
bool
could_be_serialized
=
true
;
for
(
auto
&
op
:
opt_def
.
op
())
if
(
op
.
type
()
==
"GivenTensorFill"
)
could_be_serialized
=
false
;
if
(
could_be_serialized
)
{
ws_
->
CreateTensor
(
"/graph_def/optimized/"
+
opt_def
.
name
())
->
Reshape
({
1
})
->
mutable_data
<
string
,
CPUContext
>
()[
0
]
=
opt_def
.
DebugString
();
}
// Create
Create
(
opt_def
,
ws
);
// Recomput
ing-aware
// Recomput
ation and SubGraph
if
(
subgraph_indices
.
size
()
>
0
)
{
Map
<
string
,
vector
<
OperatorBase
*>>
subgraph
;
for
(
const
auto
&
it
:
subgraph_indices
)
{
...
...
@@ -141,11 +125,13 @@ bool Graph::Run(
int
stream_id
)
{
LOG
(
DEBUG
)
<<
"Run Graph: "
<<
name
();
for
(
auto
op
:
ops_
)
{
if
(
!
include
.
empty
())
if
(
op
->
type
().
find
(
include
)
==
string
::
npos
)
continue
;
if
(
!
exclude
.
empty
())
if
(
op
->
type
().
find
(
exclude
)
!=
string
::
npos
)
continue
;
op
->
SwitchToPhase
(
this
->
args_
[
"phase"
].
s
());
if
(
!
include
.
empty
()
&&
!
str
::
find
(
op
->
type
(),
include
)
)
continue
;
if
(
!
exclude
.
empty
()
&&
str
::
find
(
op
->
type
(),
exclude
)
)
continue
;
op
->
SwitchToPhase
(
phase
());
LOG
(
DEBUG
)
<<
"$ Before Operator: "
<<
op
->
name
();
op
->
Run
(
stream_id
);
LOG
(
DEBUG
)
<<
"$ After Operator: "
<<
op
->
name
();
...
...
Dragon/src/core/graph_gradient.cc
View file @
6b82cb2
...
...
@@ -41,7 +41,7 @@ bool GraphGradientMaker::CheckGrad(
string
GraphGradientMaker
::
GetOperatorName
()
{
if
(
op_prefix_
.
empty
())
return
"runtime"
;
return
op_prefix_
+
st
d
::
to_string
(
cur_op_idx_
++
)
+
op_suffix_
;
return
op_prefix_
+
st
r
::
to
(
cur_op_idx_
++
)
+
op_suffix_
;
}
void
GraphGradientMaker
::
Make
(
...
...
@@ -91,7 +91,7 @@ void GraphGradientMaker::Make(
if
(
g_output
.
empty
())
g_output
=
"NULL"
;
g_outputs
.
emplace_back
(
g_output
);
}
Gradient
grad
=
MakeGradientForOp
(
op
,
g_outputs
);
auto
grad
=
MakeGradientForOp
(
op
,
g_outputs
);
// Process the RAW grad ops
vector
<
OperatorDef
>
gather_ops
;
...
...
@@ -101,11 +101,11 @@ void GraphGradientMaker::Make(
// Rename if necessary
if
(
terms_
.
size
()
>
0
)
{
for
(
int
i
=
0
;
i
<
g_op
.
input_size
();
++
i
)
{
string
*
input
=
g_op
.
mutable_input
(
i
);
auto
*
input
=
g_op
.
mutable_input
(
i
);
if
(
terms_
.
count
(
*
input
))
*
input
=
terms_
[
*
input
];
}
for
(
int
i
=
0
;
i
<
g_op
.
output_size
();
++
i
)
{
string
*
output
=
g_op
.
mutable_output
(
i
);
auto
*
output
=
g_op
.
mutable_output
(
i
);
if
(
terms_
.
count
(
*
output
))
*
output
=
terms_
[
*
output
];
}
for
(
int
i
=
0
;
i
<
grad
.
g_inputs
.
size
();
++
i
)
{
...
...
@@ -115,7 +115,7 @@ void GraphGradientMaker::Make(
}
// Split & gather grads for multi-used input
for
(
int
i
=
0
;
i
<
g_op
.
output_size
();
++
i
)
{
string
*
output
=
g_op
.
mutable_output
(
i
);
auto
*
output
=
g_op
.
mutable_output
(
i
);
int
original_idx
=
-
1
;
for
(
int
j
=
0
;
j
<
grad
.
g_inputs
.
size
();
++
j
)
if
(
g_op
.
output
(
i
)
==
grad
.
g_inputs
[
j
])
original_idx
=
j
;
...
...
@@ -126,11 +126,11 @@ void GraphGradientMaker::Make(
if
(
g_op
.
output
(
i
)
==
input
)
output_in_inputs
=
true
;
if
(
output_in_inputs
)
continue
;
// Found a split branch
string
original_name
=
op
.
input
(
original_idx
);
auto
original_name
=
op
.
input
(
original_idx
);
if
(
inputs_count
[
original_name
]
>
1
)
{
// Split
string
split_name
=
*
output
+
"_autosplit_"
+
st
d
::
to_string
(
grads_count
[
*
output
]
++
);
auto
split_name
=
*
output
+
"_autosplit_"
+
st
r
::
to
(
grads_count
[
*
output
]
++
);
if
(
!
is_skip
)
all_split_grads
.
insert
(
split_name
);
// Gather
if
(
grads_count
[
*
output
]
==
inputs_count
[
original_name
])
{
...
...
@@ -142,7 +142,7 @@ void GraphGradientMaker::Make(
gather_op
.
mutable_device_option
()
->
CopyFrom
(
g_op
.
device_option
());
for
(
int
j
=
0
;
j
<
grads_count
[
*
output
];
j
++
)
{
string
key
=
*
output
+
"_autosplit_"
+
std
::
to_string
(
j
);
auto
key
=
*
output
+
"_autosplit_"
+
str
::
to
(
j
);
if
(
all_split_grads
.
count
(
key
))
gather_op
.
add_input
(
key
);
}
gather_ops
.
emplace_back
(
gather_op
);
...
...
@@ -219,7 +219,7 @@ GraphDef GraphGradientMaker::Share(const GraphDef& input_def) {
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
// Ignore the non-gradient ops
if
(
op
.
type
().
find
(
"Gradient"
)
==
string
::
npos
)
continue
;
if
(
!
str
::
find
(
op
.
type
(),
"Gradient"
)
)
continue
;
if
(
op
.
type
()
==
"GradientGather"
)
{
invalid_ops
.
insert
(
i
);
if
(
ignore_grads_
.
count
(
op
.
output
(
0
)))
{
...
...
@@ -237,8 +237,8 @@ GraphDef GraphGradientMaker::Share(const GraphDef& input_def) {
}
}
for
(
const
auto
&
input
:
op
.
input
())
if
(
input
.
find
(
"grad"
)
!=
string
::
npos
)
ref_count
[
input
]
+=
1
;
if
(
str
::
find
(
input
,
"grad"
)
)
ref_count
[
input
]
+=
1
;
}
// Decompose the GradientGather in SSA format
...
...
@@ -247,7 +247,7 @@ GraphDef GraphGradientMaker::Share(const GraphDef& input_def) {
if
(
invalid_ops
.
count
(
i
))
continue
;
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
output_def
.
add_op
()
->
CopyFrom
(
op
);
if
(
op
.
type
().
find
(
"Gradient"
)
==
string
::
npos
)
continue
;
if
(
!
str
::
find
(
op
.
type
(),
"Gradient"
)
)
continue
;
for
(
const
auto
&
output
:
op
.
output
())
{
const
auto
&
find_iter
=
ssa_map
.
find
(
output
);
if
(
find_iter
!=
ssa_map
.
end
())
{
...
...
@@ -277,7 +277,7 @@ GraphDef GraphGradientMaker::Share(const GraphDef& input_def) {
auto
get_temporary_grad
=
[
&
]()
mutable
{
if
(
grads_pool
.
empty
())
{
return
"/share/buffer/grad:"
+
st
d
::
to_string
(
temporary_idx
++
);
st
r
::
to
(
temporary_idx
++
);
}
else
{
/*!
* LIFO is more memory efficent than FIFO usually,
...
...
@@ -295,7 +295,7 @@ GraphDef GraphGradientMaker::Share(const GraphDef& input_def) {
for
(
int
i
=
0
;
i
<
output_def
.
op_size
();
++
i
)
{
OperatorDef
*
op
=
output_def
.
mutable_op
(
i
);
// Ignore the non-gradient ops
if
(
op
->
type
().
find
(
"Gradient"
)
==
string
::
npos
)
continue
;
if
(
!
str
::
find
(
op
->
type
(),
"Gradient"
)
)
continue
;
// GC to store the grads that have finished lifecycle
vector
<
string
>
GC
;
// Inplace-aware
...
...
Dragon/src/core/graph_optimizer.cc
View file @
6b82cb2
...
...
@@ -13,7 +13,7 @@ GraphDef GraphOptimizer::PruneNodes(const GraphDef& input_def) {
dag_
.
clear
();
colored_
.
clear
();
// Build DAG
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
const
auto
&
op
=
input_def
.
op
(
i
);
for
(
const
auto
&
v
:
op
.
output
())
{
vector
<
string
>
sp_u
;
if
(
!
op
.
input_size
())
sp_u
.
resize
(
op
.
output_size
());
...
...
@@ -36,8 +36,8 @@ GraphDef GraphOptimizer::PruneNodes(const GraphDef& input_def) {
// Forward dyeing through connected path for all gradients
for
(
const
auto
&
gradient
:
input_def
.
gradient
())
{
string
u
=
gradient
.
cost
()
+
"_grad"
;
string
v
=
gradient
.
wrt
()
+
"_grad"
;
auto
u
=
gradient
.
cost
()
+
"_grad"
;
auto
v
=
gradient
.
wrt
()
+
"_grad"
;
if
(
ws_
->
HasTensor
(
u
))
u
=
ws_
->
GetTensor
(
u
)
->
name
();
if
(
ws_
->
HasTensor
(
v
))
v
=
ws_
->
GetTensor
(
v
)
->
name
();
visited_
.
clear
();
...
...
@@ -111,7 +111,7 @@ GraphDef GraphOptimizer::AddInplace(const GraphDef& input_def) {
dag_
.
clear
();
renamed_
.
clear
();
// Build DAG
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
const
auto
&
op
=
input_def
.
op
(
i
);
for
(
const
auto
&
v
:
op
.
output
())
{
vector
<
string
>
sp_u
;
if
(
!
op
.
input_size
())
sp_u
.
resize
(
op
.
output_size
());
...
...
@@ -142,7 +142,7 @@ GraphDef GraphOptimizer::AddInplace(const GraphDef& input_def) {
// Rename to create in-place
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
const
auto
&
op
=
input_def
.
op
(
i
);
for
(
int
j
=
0
;
j
<
op
.
input_size
();
++
j
)
{
if
(
whitelist
.
count
(
op
.
input
(
j
))
==
0
&&
renamed_
.
count
(
op
.
input
(
j
))
&&
...
...
@@ -172,7 +172,7 @@ GraphDef GraphOptimizer::AddInplace(const GraphDef& input_def) {
GraphDef
GraphOptimizer
::
MirrorStage
(
const
GraphDef
&
input_def
,
Map
<
string
,
vec32_t
>&
op_indices
)
{
Map
<
string
,
vec32_t
>&
op_indices
)
{
GraphDef
output_def
(
input_def
);
Map
<
string
,
set
<
int
>>
fake_op_indices
;
Map
<
string
,
string
>
rename_map
;
...
...
@@ -180,7 +180,7 @@ GraphDef GraphOptimizer::MirrorStage(
// Check mirror stage
for
(
const
auto
&
op
:
input_def
.
op
())
{
if
(
op
.
type
().
find
(
"Gradient"
)
!=
string
::
npos
)
continue
;
if
(
str
::
find
(
op
.
type
(),
"Gradient"
)
)
continue
;
bool
mirror_stage
=
false
;
for
(
auto
&
arg
:
op
.
arg
())
if
(
arg
.
name
()
==
"mirror_stage"
)
...
...
@@ -194,8 +194,8 @@ GraphDef GraphOptimizer::MirrorStage(
// Allocate the temporal buffers
string
v2_name
,
version_name
;
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
OperatorDef
*
op_v2
=
output_def
.
mutable_op
(
i
);
const
auto
&
op
=
input_def
.
op
(
i
);
auto
*
op_v2
=
output_def
.
mutable_op
(
i
);
vector
<
string
>
used_buffers
;
for
(
int
j
=
0
;
j
<
op
.
input_size
();
++
j
)
{
const
auto
&
it
=
rename_map
.
find
(
op
.
input
(
j
));
...
...
@@ -217,24 +217,25 @@ GraphDef GraphOptimizer::MirrorStage(
continue
;
}
for
(
int
k
=
0
;
k
<
GRAPH_TEPORAL_OUTPUT_MAX_SIZE
;
++
k
)
{
v2_name
=
"/share/buffer/symbol:"
+
st
d
::
to_string
(
k
);
v2_name
=
"/share/buffer/symbol:"
+
st
r
::
to
(
k
);
for
(
const
auto
&
buffer
:
used_buffers
)
if
(
buffer
.
find
(
v2_name
)
!=
string
::
npos
)
{
v2_name
.
clear
();
}
if
(
str
::
find
(
buffer
,
v2_name
)
)
{
v2_name
.
clear
();
}
if
(
!
v2_name
.
empty
())
{
used_buffers
.
emplace_back
(
v2_name
);
break
;
}
}
CHECK
(
!
v2_name
.
empty
())
<<
"
\n
No enough buffers for outputs."
;
ws_
->
CreateTensor
(
v2_name
)
->
set_version
(
0
);
version_name
=
"/ver:"
+
std
::
to_string
(
versions
[
v2_name
]
++
);
*
op_v2
->
mutable_output
(
j
)
=
rename_map
[
op
.
output
(
j
)]
=
v2_name
+
version_name
;
version_name
=
"/ver:"
+
str
::
to
(
versions
[
v2_name
]
++
);
*
op_v2
->
mutable_output
(
j
)
=
rename_map
[
op
.
output
(
j
)]
=
v2_name
+
version_name
;
}
}
}
// Plan the minimum recomputing ops for temporal buffers
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
const
OperatorDef
&
input_op
=
input_def
.
op
(
i
);
const
OperatorDef
&
output_op
=
output_def
.
op
(
i
);
const
auto
&
input_op
=
input_def
.
op
(
i
);
const
auto
&
output_op
=
output_def
.
op
(
i
);
/* ----------------------------------------------------------
*
...
...
@@ -244,7 +245,7 @@ GraphDef GraphOptimizer::MirrorStage(
*
* ---------------------------------------------------------- */
set
<
int
>
minimum_ops
=
{
i
};
set
<
int
>
minimum_ops
=
{
i
};
for
(
int
j
=
0
;
j
<
input_op
.
input_size
();
++
j
)
{
if
(
input_op
.
input
(
j
)
!=
output_op
.
input
(
j
))
{
for
(
auto
idx
:
fake_op_indices
[
input_op
.
input
(
j
)])
...
...
@@ -270,86 +271,91 @@ GraphDef GraphOptimizer::MirrorStage(
/* Allocate the buffer for outputs (-O3) */
GraphDef
GraphOptimizer
::
SimulateGC
(
const
GraphDef
&
input_def
)
{
GraphDef
output_def
(
input_def
);
Set
<
string
>
targets
;
Set
<
string
>
blacklist
;
Map
<
string
,
int
>
ref_count
;
Map
<
string
,
string
>
rename_map
;
Set
<
string
>
dimension_ops
=
{
"Shape"
,
"Reshape"
,
"Flatten"
,
"ExpandDims"
,
"Squeeze"
,
},
blacklist_outputs
,
star_ops
=
{
"Reshape"
,
"Crop"
,
"NNResize"
,
"BilinearResize"
,
static
Set
<
string
>
dim_ops
=
{
"Shape"
,
"Squeeze"
,
"Reshape"
,
"Flatten"
,
"ExpandDims"
,
},
star_ops
=
{
"Crop"
,
"Reshape"
,
"NNResize"
,
"BilinearResize"
,
};
// Prepare the
Outputs P
ool
// Prepare the
p
ool
int
temporary_idx
=
0
;
std
::
deque
<
string
>
outputs_
pool
;
std
::
deque
<
string
>
pool
;
auto
get_temporary_output
=
[
&
]()
mutable
{
if
(
outputs_
pool
.
empty
())
{
if
(
pool
.
empty
())
{
return
"/share/buffer/output:"
+
st
d
::
to_string
(
temporary_idx
++
);
st
r
::
to
(
temporary_idx
++
);
}
else
{
string
temporary_output
=
outputs_
pool
.
back
();
outputs_
pool
.
pop_back
();
auto
temporary_output
=
pool
.
back
();
pool
.
pop_back
();
return
temporary_output
;
}
};
// Count the references
for
(
const
auto
&
op
:
input_def
.
op
())
{
for
(
auto
&
input
:
op
.
input
())
for
(
const
auto
&
input
:
op
.
input
())
ref_count
[
input
]
+=
1
;
if
(
dim
ension
_ops
.
count
(
op
.
type
()))
blacklist
_outputs
.
insert
(
op
.
input
(
0
));
if
(
dim_ops
.
count
(
op
.
type
()))
blacklist
.
insert
(
op
.
input
(
0
));
if
(
star_ops
.
count
(
op
.
type
()))
{
for
(
const
auto
&
arg
:
op
.
arg
())
if
(
arg
.
name
()
==
"shape_like"
)
blacklist_outputs
.
insert
(
arg
.
s
());
blacklist
.
insert
(
ws_
->
GetTensorName
(
arg
.
s
())
);
}
}
// We should preserve the targets
for
(
auto
&
e
:
input_def
.
output
())
targets
.
insert
(
e
);
for
(
auto
&
e
:
input_def
.
output
())
blacklist
.
insert
(
e
);
// Rewritten the inputs and outputs
string
ori_name
;
bool
inplace_flag
;
auto
output_def
(
input_def
);
string
name
;
bool
inplace_flag
;
for
(
int
i
=
0
;
i
<
input_def
.
op_size
();
++
i
)
{
vector
<
string
>
GC
;
const
OperatorDef
&
op
=
input_def
.
op
(
i
);
OperatorDef
*
op_v2
=
output_def
.
mutable_op
(
i
);
const
auto
&
op
=
input_def
.
op
(
i
);
auto
*
op_v2
=
output_def
.
mutable_op
(
i
);
// Ignore the init operators
if
(
op
.
input_size
()
==
0
)
continue
;
// Analyze the inputs
for
(
int
j
=
0
;
j
<
op
.
input_size
();
++
j
)
{
ori_
name
=
op
.
input
(
j
);
if
(
rename_map
.
count
(
ori_
name
))
{
name
=
op
.
input
(
j
);
if
(
rename_map
.
count
(
name
))
{
*
op_v2
->
mutable_input
(
j
)
=
rename_map
[
ori_
name
];
rename_map
[
name
];
}
ref_count
[
ori_
name
]
--
;
if
(
ref_count
[
ori_name
]
==
0
&&
op_v2
->
input
(
j
).
find
(
"/share/buffer/output:"
)
!=
string
::
npos
)
ref_count
[
name
]
--
;
if
(
ref_count
[
name
]
==
0
&&
str
::
find
(
op_v2
->
input
(
j
),
"/share/buffer/output:"
)
)
GC
.
push_back
(
op_v2
->
input
(
j
));
}
// Allocate the buffers
if
(
!
dim
ension
_ops
.
count
(
op
.
type
()))
{
if
(
!
dim_ops
.
count
(
op
.
type
()))
{
for
(
int
j
=
0
;
j
<
op
.
output_size
();
++
j
)
{
name
=
op
.
output
(
j
);
inplace_flag
=
false
;
ori_name
=
op
.
output
(
j
);
if
(
targets
.
count
(
ori_name
)
||
blacklist_outputs
.
count
(
ori_name
))
continue
;
if
(
blacklist
.
count
(
name
))
continue
;
for
(
const
auto
&
input
:
op
.
input
())
if
(
ori_name
==
input
)
inplace_flag
=
true
;
if
(
name
==
input
)
inplace_flag
=
true
;
if
(
inplace_flag
)
{
*
op_v2
->
mutable_output
(
j
)
=
op_v2
->
input
(
j
);
}
else
{
rename_map
[
ori_
name
]
=
rename_map
[
name
]
=
*
op_v2
->
mutable_output
(
j
)
=
get_temporary_output
();
}
...
...
@@ -357,7 +363,7 @@ GraphDef GraphOptimizer::SimulateGC(const GraphDef& input_def) {
}
// Update the pool from GC
for
(
auto
&
e
:
GC
)
outputs_
pool
.
emplace_back
(
e
);
for
(
const
auto
&
e
:
GC
)
pool
.
emplace_back
(
e
);
}
return
output_def
;
...
...
@@ -377,8 +383,8 @@ void GraphOptimizer::ForwardPruneTraversal(
}
visited_
[
u
]
=
false
;
for
(
int
i
=
0
;
i
<
dag_
[
u
].
childs
.
size
();
++
i
)
{
string
v
=
dag_
[
u
].
childs
[
i
];
vector
<
string
>
new_path
(
path
);
auto
v
=
dag_
[
u
].
childs
[
i
];
auto
new_path
(
path
);
new_path
.
push_back
(
v
);
if
(
v
==
leaf
)
{
for
(
const
auto
&
node
:
new_path
)
...
...
@@ -394,7 +400,7 @@ void GraphOptimizer::ForwardPruneTraversal(
void
GraphOptimizer
::
BackwardPruneTraversal
(
const
string
&
v
)
{
colored_
[
v
]
=
true
;
for
(
int
i
=
0
;
i
<
dag_
[
v
].
parents
.
size
();
++
i
)
{
string
u
=
dag_
[
v
].
parents
[
i
];
auto
u
=
dag_
[
v
].
parents
[
i
];
if
(
colored_
.
count
(
u
))
continue
;
BackwardPruneTraversal
(
u
);
}
...
...
Dragon/src/core/mixedmem.cc
View file @
6b82cb2
...
...
@@ -153,7 +153,7 @@ const Map<string, string> MixedMemory::info() const {
<<
"but got invalid mem pointer."
;
}
s2s
[
"device_type"
]
=
_state_
;
s2s
[
"device_id"
]
=
st
d
::
to_string
(
ptr_device_
);
s2s
[
"device_id"
]
=
st
r
::
to
(
ptr_device_
);
return
s2s
;
}
...
...
Dragon/src/core/operator.cc
View file @
6b82cb2
...
...
@@ -9,17 +9,15 @@ namespace dragon {
OperatorBase
::
OperatorBase
(
const
OperatorDef
&
def
,
Workspace
*
ws
)
:
def_
(
def
),
ws_
(
ws
),
anchor_
(
def
.
name
()),
dtype_
(
"float32"
),
data_format_
(
"NCHW"
)
{
:
def_
(
def
),
ws_
(
ws
),
handle_
(
def
.
name
()),
dtype_
(
"float32"
),
data_format_
(
"NCHW"
)
{
// Scan the defined arguments
for
(
auto
&
arg
:
def_
.
arg
())
{
CHECK_GT
(
arg
.
name
().
size
(),
0
);
CHECK_EQ
(
args_
.
count
(
arg
.
name
()),
0
);
args_
[
arg
.
name
()]
=
&
arg
;
if
(
arg
.
name
()
==
"
anchor
"
)
{
anchor
_
=
arg
.
s
();
if
(
arg
.
name
()
==
"
handle
"
)
{
handle
_
=
arg
.
s
();
}
else
if
(
arg
.
name
()
==
"dtype"
)
{
dtype_
=
arg
.
s
();
}
else
if
(
arg
.
name
()
==
"data_format"
)
{
...
...
@@ -28,20 +26,18 @@ OperatorBase::OperatorBase(
}
// Set the inputs and outputs
string
tensor_
name
;
size_t
ver_pos
;
for
(
auto
&
e
:
def
.
input
())
{
tensor_
name
=
e
;
string
name
;
size_t
ver_pos
;
for
(
const
auto
&
e
:
def
.
input
())
{
name
=
e
;
if
((
ver_pos
=
e
.
find
(
"/ver:"
))
!=
string
::
npos
)
tensor_name
=
e
.
substr
(
0
,
ver_pos
);
auto
*
tensor
=
ws
->
GetTensor
(
tensor_name
);
inputs_
.
push_back
(
tensor
);
name
=
e
.
substr
(
0
,
ver_pos
);
inputs_
.
push_back
(
ws
->
GetTensor
(
name
));
}
for
(
auto
&
e
:
def
.
output
())
{
tensor_
name
=
e
;
for
(
const
auto
&
e
:
def
.
output
())
{
name
=
e
;
if
((
ver_pos
=
e
.
find
(
"/ver:"
))
!=
string
::
npos
)
tensor_name
=
e
.
substr
(
0
,
ver_pos
);
auto
*
tensor
=
ws
->
CreateTensor
(
tensor_name
);
outputs_
.
push_back
(
tensor
);
name
=
e
.
substr
(
0
,
ver_pos
);
outputs_
.
push_back
(
ws
->
CreateTensor
(
name
));
}
}
...
...
@@ -90,10 +86,10 @@ string OperatorBase::DTypeString(
return
ss
.
str
();
}
/* Modify
this
operator according to the given def */
/* Modify operator according to the given def */
void
OperatorBase
::
UpdateFrom
(
const
OperatorDef
&
def
)
{
anchor
_
=
def
.
name
();
handle
_
=
def
.
name
();
inputs_
.
resize
(
def
.
input_size
());
outputs_
.
resize
(
def
.
output_size
());
for
(
int
i
=
0
;
i
<
inputs_
.
size
();
i
++
)
...
...
@@ -102,7 +98,7 @@ void OperatorBase::UpdateFrom(const OperatorDef& def) {
outputs_
[
i
]
=
ws
()
->
CreateTensor
(
def
.
output
(
i
));
}
/*
! Create a operator instance
from the factory */
/*
Create an operator
from the factory */
OperatorBase
*
TryCreateOperator
(
const
string
&
key
,
...
...
@@ -127,7 +123,7 @@ OperatorBase* TryCreateOperator(
}
}
/* New a operator from the raw def */
/* New a
n
operator from the raw def */
OperatorBase
*
NewOperator
(
const
OperatorDef
&
def
,
...
...
@@ -164,7 +160,7 @@ Gradient MakeGradientForOp(
for
(
int
i
=
0
;
i
<
grad
.
ops
.
size
();
++
i
)
{
grad
.
ops
[
i
].
set_uid
(
reference_def
.
uid
()
+
"/grad"
+
(
i
>
0
?
(
":"
+
st
d
::
to_string
(
i
))
:
""
)
(
i
>
0
?
(
":"
+
st
r
::
to
(
i
))
:
""
)
);
}
}
...
...
Dragon/src/core/workspace.cc
View file @
6b82cb2
...
...
@@ -241,9 +241,9 @@ string Workspace::GetDummyName(
while
(
1
)
{
index
=
dmap
[
required_name
]
++
;
accepted_name
=
index
?
base_name
+
"_"
+
st
d
::
to_string
(
index
)
+
suffix
:
st
r
::
to
(
index
)
+
suffix
:
zero_based
?
required_name
:
base_name
+
"_"
+
st
d
::
to_string
(
base_name
+
"_"
+
st
r
::
to
(
dmap
[
required_name
]
++
)
+
suffix
;
if
(
remote_workspaces_
.
empty
())
break
;
if
(
!
HasTensor
(
accepted_name
))
break
;
...
...
Dragon/src/kernels/array/index_select_op_kernel.cc
View file @
6b82cb2
...
...
@@ -18,18 +18,18 @@ void _IndexSelect(
const
T
*
x
,
T
*
y
,
CPUContext
*
ctx
)
{
int64_t
x_of
fset
,
select_idx
;
int64_t
x_of
s
,
select_idx
;
for
(
int
n
=
0
;
n
<
outer_dim
;
++
n
)
{
for
(
int
i
=
0
;
i
<
num_indices
;
++
i
)
{
select_idx
=
indices
[
i
];
select_idx
=
select_idx
>=
0
?
select_idx
:
select_idx
+
axis_dim
;
x_of
fset
=
(
x_of
s
=
(
n
*
axis_dim
+
select_idx
)
*
inner_dim
;
math
::
Copy
(
inner_dim
,
x
+
x_of
fset
,
x
+
x_of
s
,
y
,
ctx
);
y
+=
inner_dim
;
}
...
...
@@ -48,7 +48,7 @@ void _IndexSelectGrad(
const
T
*
dy
,
T
*
dx
,
CPUContext
*
ctx
)
{
int64_t
x_of
fset
,
select_idx
;
int64_t
x_of
s
,
select_idx
;
auto
nelements
=
outer_dim
*
axis_dim
*
inner_dim
;
math
::
Set
(
nelements
,
cast
::
to
<
T
>
(
0.
f
),
dx
,
ctx
);
for
(
int
n
=
0
;
n
<
outer_dim
;
++
n
)
{
...
...
@@ -56,13 +56,13 @@ void _IndexSelectGrad(
select_idx
=
indices
[
i
];
select_idx
=
select_idx
>=
0
?
select_idx
:
select_idx
+
axis_dim
;
x_of
fset
=
(
x_of
s
=
(
n
*
axis_dim
+
select_idx
)
*
inner_dim
;
math
::
Add
(
inner_dim
,
dy
,
dx
+
x_of
fset
,
dx
+
x_of
fset
,
ctx
dy
,
dx
+
x_of
s
,
dx
+
x_of
s
,
ctx
);
dy
+=
inner_dim
;
}
}
...
...
Dragon/src/onnx/onnx_importer.cc
View file @
6b82cb2
...
...
@@ -59,7 +59,7 @@ ONNXImporterReturns ONNXBackend::ConvPoolNodeImporter(
auto
mode
=
attributes
.
get
<
string
>
(
"auto_pad"
);
auto
*
padding
=
attributes
.
AddRewrittenAttribute
(
"padding"
);
// SAME, SAME_LOWER, or SAME_UPPER
if
(
mode
.
find
(
"SAME"
)
!=
string
::
npos
)
padding
->
set_s
(
mode
);
if
(
str
::
find
(
mode
,
"SAME"
)
)
padding
->
set_s
(
mode
);
else
padding
->
set_s
(
"VALID"
);
// Use explicit pads
attributes
.
remove
(
"auto_pad"
);
...
...
@@ -77,7 +77,7 @@ ONNXImporterReturns ONNXBackend::ConvPoolNodeImporter(
// Determine the op type
OperatorDef
*
op_def
=
returns
.
GetOp
(
0
);
auto
ks
=
attributes
.
get
<
ONNX_INTS
>
(
"kernel_shape"
);
*
(
op_def
->
mutable_type
())
+=
(
st
d
::
to_string
(
ks
.
size
())
+
"d"
);
*
(
op_def
->
mutable_type
())
+=
(
st
r
::
to
(
ks
.
size
())
+
"d"
);
return
returns
;
}
...
...
@@ -329,7 +329,7 @@ ONNXImporterReturns ONNXBackend::LpNormNodeImporter(
// Determine the "p", i.e. op type
auto
p
=
attributes
.
get
<
int64_t
>
(
"p"
,
2
);
node
.
set_op_type
(
"L"
+
st
d
::
to_string
(
p
)
+
"Norm"
);
node
.
set_op_type
(
"L"
+
st
r
::
to
(
p
)
+
"Norm"
);
attributes
.
remove
(
"p"
);
auto
*
num_axes
=
attributes
.
AddRewrittenAttribute
(
"num_axes"
);
...
...
Dragon/src/operators/activation/cudnn_dropout_op.cc
View file @
6b82cb2
...
...
@@ -24,7 +24,7 @@ void CuDNNDropoutOp<Context>::RunImpl() {
std
::
lock_guard
<
std
::
mutex
>
lk
(
CUDAContext
::
mutex
());
auto
*
states_tensor
=
ws
()
->
CreateTensor
(
"/share/cudnn/dropout:"
+
std
::
to_string
(
rng_seed_
)
+
"/states"
);
str
::
to
(
rng_seed_
)
+
"/states"
);
if
(
states_tensor
->
count
()
>
0
)
{
auto
*
states
=
states_tensor
->
template
mutable_data
<
uint8_t
,
Context
>
();
...
...
@@ -95,7 +95,7 @@ void CuDNNDropoutGradientOp<Context>::RunImpl() {
std
::
lock_guard
<
std
::
mutex
>
lk
(
CUDAContext
::
mutex
());
auto
*
states_tensor
=
ws
()
->
CreateTensor
(
"/share/cudnn/dropout:"
+
std
::
to_string
(
rng_seed_
)
+
"/states"
);
str
::
to
(
rng_seed_
)
+
"/states"
);
if
(
states_tensor
->
count
()
>
0
)
{
auto
*
states
=
states_tensor
->
template
mutable_data
<
uint8_t
,
Context
>
();
...
...
Dragon/src/operators/activation/dropout_op.cc
View file @
6b82cb2
...
...
@@ -68,7 +68,7 @@ void DropoutGradientOp<Context>::RunImpl() {
dx
,
ctx
()
);
}
else
{
LOG
(
FATAL
)
<<
"
Incorrect Op p
hase: "
<<
phase
();
LOG
(
FATAL
)
<<
"
Unknown P
hase: "
<<
phase
();
}
}
...
...
Dragon/src/operators/recurrent/cudnn_recurrent_op.cc
View file @
6b82cb2
...
...
@@ -27,7 +27,7 @@ void CuDNNRecurrentOpBase<Context>::ResetDesc() {
std
::
lock_guard
<
std
::
mutex
>
lk
(
CUDAContext
::
mutex
());
auto
*
states_tensor
=
ws
()
->
CreateTensor
(
"/share/cudnn/dropout:"
+
std
::
to_string
(
rng_seed_
)
+
"/states"
);
str
::
to
(
rng_seed_
)
+
"/states"
);
if
(
states_tensor
->
count
()
>
0
)
{
auto
*
states
=
states_tensor
->
template
mutable_data
<
uint8_t
,
Context
>
();
...
...
Dragon/src/operators/vision/conv_op_base.cc
View file @
6b82cb2
...
...
@@ -15,7 +15,7 @@ void ConvOpBase<Context>::ComputeOutShape() {
if
(
!
Transposed
())
{
auto
idm
=
x_shape_
[
axis_
+
i
];
auto
dk
=
dilation_
[
i
]
*
(
kshape_
[
i
]
-
1
)
+
1
;
if
(
padding_
.
find
(
"SAME"
)
==
string
::
npos
)
{
if
(
!
str
::
find
(
padding_
,
"SAME"
)
)
{
// Explicit pads
auto
odm
=
(
idm
+
pad_l_
[
i
]
+
pad_r_
[
i
]
-
dk
...
...
@@ -38,7 +38,7 @@ void ConvOpBase<Context>::ComputeOutShape() {
}
else
{
auto
idm
=
x_shape_
[
axis_
+
i
];
auto
dk
=
dilation_
[
i
]
*
(
kshape_
[
i
]
-
1
)
+
1
;
if
(
padding_
.
find
(
"SAME"
)
==
string
::
npos
)
{
if
(
!
str
::
find
(
padding_
,
"SAME"
)
)
{
// Explicit pads
auto
odm
=
stride_
[
i
]
*
(
idm
-
1
)
+
dk
-
pad_l_
[
i
]
-
pad_r_
[
i
];
...
...
Dragon/src/operators/vision/pool2d_op.cc
View file @
6b82cb2
...
...
@@ -17,7 +17,7 @@ namespace dragon {
for (int i = 0; i < 2; i++) \
kshape_[i] = X(0).dim(i + 2); \
} \
if (
padding_.find("SAME") != string::npos
) { \
if (
str::find(padding_, "SAME")
) { \
for (int i = 0; i < 2; i++) { \
auto idm = X(0).dim(i + 2); \
int64_t odm = (idm + stride_[i] - 1 \
...
...
@@ -38,7 +38,7 @@ namespace dragon {
for (int i = 0; i < 2; i++) \
kshape_[i] = X(0).dim(i + 1); \
} \
if (
padding_.find("SAME") != string::npos
) { \
if (
str::find(padding_, "SAME")
) { \
for (int i = 0; i < 2; i++) { \
auto idm = X(0).dim(i + 1); \
int64_t odm = (idm + stride_[i] - 1 \
...
...
@@ -55,7 +55,7 @@ namespace dragon {
} else { \
LOG(FATAL) << "Unknown DataFormat: " << data_format(); \
} \
if (
padding_.find("SAME") == string::npos
) { \
if (
!str::find(padding_, "SAME")
) { \
/*! Case 1: infer output shape with explicit pads */
\
if (ceil_mode_) { \
pool_h_ = ceil( \
...
...
Dragon/src/utils/logging.cc
View file @
6b82cb2
...
...
@@ -35,7 +35,7 @@ LogSeverity StrToLogSeverity(std::string level) {
}
std
::
string
GenLogHashKey
(
const
char
*
file
,
int
line
)
{
return
std
::
string
(
file
)
+
st
d
::
to_string
(
line
);
return
std
::
string
(
file
)
+
st
r
::
to
(
line
);
}
int
EveryNRegister
(
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment