Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
Dragon
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 94863c22
authored
Feb 10, 2018
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix the disorder while compiling ops
1 parent
f4e789be
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
47 additions
and
26 deletions
Dragon/include/operators/ndarray/repeat_op.h
Dragon/include/operators/norm/l2_norm_op.h
Dragon/python/dragon/operators/ndarray.py
Dragon/python/dragon/vm/caffe/net.py
Dragon/python/dragon/vm/theano/compile/function.py
Dragon/python/setup.py
Dragon/src/operators/ndarray/repeat_op.cc
Dragon/src/operators/norm/l2_norm_op.cc
Dragon/include/operators/ndarray/repeat_op.h
View file @
94863c2
...
...
@@ -17,30 +17,32 @@ class RepeatOp : public Operator<Context> {
RepeatOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
repeats
(
OperatorBase
::
GetSingleArg
<
int
>
(
"repeats"
,
1
))
{}
repeats
_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
TIndex
axis
,
repeats
,
outer_dim
,
dim
,
inner_dim
;
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
string
repeats_desc
;
};
template
<
class
Context
>
class
RepeatGradientOp
:
public
Operator
<
Context
>
{
public
:
public
:
RepeatGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
-
1
)),
repeats
(
OperatorBase
::
GetSingleArg
<
int
>
(
"repeats"
,
1
))
{}
repeats
_desc
(
OperatorBase
::
GetSingleArg
<
string
>
(
"repeats"
,
""
))
{}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
TIndex
axis
,
repeats
,
outer_dim
,
dim
,
inner_dim
;
TIndex
axis
,
outer_dim
,
dim
,
inner_dim
,
reps
;
string
repeats_desc
;
};
}
// namespace dragon
#endif // DRAGON_OPERATORS_NDARRAY_REPEAT_OP_H_
\ No newline at end of file
#endif // DRAGON_OPERATORS_NDARRAY_REPEAT_OP_H_
Dragon/include/operators/norm/l2_norm_op.h
View file @
94863c2
...
...
@@ -33,20 +33,21 @@ class L2NormOp final : public Operator<Context> {
TIndex
outer_dim
,
dim
,
inner_dim
,
spatial_dim
;
};
template
<
class
Context
>
class
L2NormGradientOp
final
:
public
Operator
<
Context
>
{
public
:
L2NormGradientOp
(
const
OperatorDef
&
op_def
,
Workspace
*
ws
)
:
Operator
<
Context
>
(
op_def
,
ws
),
axis
(
OperatorBase
::
GetSingleArg
<
int
>
(
"axis"
,
0
)),
num_axes
(
OperatorBase
::
GetSingleArg
<
int
>
(
"num_axes"
,
-
1
))
{}
num_axes
(
OperatorBase
::
GetSingleArg
<
int
>
(
"num_axes"
,
-
1
)),
mode
(
OperatorBase
::
GetSingleArg
<
string
>
(
"mode"
,
"SUM"
))
{}
void
RunOnDevice
()
override
;
template
<
typename
T
>
void
RunWithType
();
protected
:
TIndex
axis
,
num_axes
,
end_axis
;
string
mode
;
bool
across_inner
;
Tensor
*
norm
,
*
multiplier
,
*
buffer
,
*
buffer_inner
;
TIndex
outer_dim
,
dim
,
inner_dim
;
...
...
Dragon/python/dragon/operators/ndarray.py
View file @
94863c2
...
...
@@ -279,7 +279,6 @@ def Reduce(inputs, axis=-1, operation='NONE', keep_dims=False, **kwargs):
output
.
shape
[
i
]
=
1
else
:
output
.
shape
=
[
1
]
else
:
if
keep_dims
:
output
.
shape
[
axis
]
=
1
else
:
del
output
.
shape
[
axis
]
...
...
@@ -445,7 +444,7 @@ def Repeat(inputs, axis=-1, repeats=1, **kwargs):
The input tensor.
axis : int
The axis to repeat. Defaults is ``-1`` (Repeat as Scalar).
repeats : int
repeats : int
or Tensor
The magnitude of repeating.
Returns
...
...
@@ -456,12 +455,17 @@ def Repeat(inputs, axis=-1, repeats=1, **kwargs):
"""
CheckInputs
(
inputs
,
1
)
arguments
=
ParseArguments
(
locals
())
arguments
[
'extra_inputs'
]
=
[
Tensor
.
Convert
(
repeats
,
dtype
=
'int32'
)]
arguments
[
'repeats'
]
=
arguments
[
'extra_inputs'
][
0
]
.
name
output
=
Tensor
.
CreateOperator
(
nout
=
1
,
op_type
=
'Repeat'
,
**
arguments
)
if
inputs
.
shape
is
not
None
:
if
inputs
.
shape
is
not
None
and
\
not
isinstance
(
repeats
,
Tensor
):
if
axis
==
-
1
:
total_count
=
np
.
prod
(
inputs
.
shape
)
fake_shape
=
inputs
.
shape
[:]
fake_shape
=
[
1
if
dim
is
None
else
dim
for
dim
in
fake_shape
]
total_count
=
np
.
prod
(
fake_shape
)
output
.
shape
=
[
total_count
*
repeats
]
else
:
output
.
shape
=
inputs
.
shape
[:]
...
...
Dragon/python/dragon/vm/caffe/net.py
View file @
94863c2
...
...
@@ -552,7 +552,6 @@ class Net(object):
"""
return
list
(
self
.
_net_outputs
)
def
replace
(
self
,
A
,
B
):
"""Replace the A as B.
...
...
Dragon/python/dragon/vm/theano/compile/function.py
View file @
94863c2
...
...
@@ -262,7 +262,6 @@ def function(inputs=None, outputs=None, givens=None, updater=None):
all_exprs
=
dict
(
all_exprs
,
**
output
.
expressions
)
all_extra_targets
=
all_extra_targets
.
union
(
output
.
extra_targets
)
if
len
(
output
.
grad_wrts
)
>
0
:
existing_grads
=
True
for
extra_target
in
all_extra_targets
:
meta_graph
.
target
.
extend
([
extra_target
])
# we should sort out the topology of these operators before using
all_exprs
=
sorted
(
all_exprs
.
items
(),
key
=
lambda
d
:
d
[
0
])
...
...
@@ -280,9 +279,10 @@ def function(inputs=None, outputs=None, givens=None, updater=None):
external_input_exprs
=
OrderedDict
(
external_input_exprs
,
**
new_tensor
.
expressions
)
else
:
external_input_exprs
=
dict
(
external_input_exprs
,
**
new_tensor
.
expressions
)
external_input_exprs
=
OrderedDict
(
sorted
(
external_input_exprs
.
items
(),
lambda
x
,
y
:
cmp
(
x
[
1
],
y
[
1
])
))
external_input_exprs
=
OrderedDict
(
sorted
(
external_input_exprs
.
items
(),
key
=
lambda
A
:
A
[
0
]
))
elif
isinstance
(
new_tensor
,
np
.
ndarray
):
ws
.
FeedTensor
(
new_tensor
,
GetTensorName
())
all_extra_targets
=
all_extra_targets
.
union
(
new_tensor
.
extra_targets
)
external_input_ops
=
[
v
for
k
,
v
in
external_input_exprs
.
items
()]
for
op
in
forward_ops
:
op
.
input
.
extend
([
name_dict
[
input
]
if
input
in
name_dict
...
...
@@ -298,8 +298,15 @@ def function(inputs=None, outputs=None, givens=None, updater=None):
forward_ops
,
grad_ops
=
GraphGradientMaker
.
Make
(
forward_ops
,
targets
)
else
:
grad_ops
=
[]
# Write Ops
meta_graph
.
op
.
extend
(
forward_ops
+
grad_ops
)
# Write Extra Targets
for
extra_target
in
all_extra_targets
:
meta_graph
.
target
.
extend
([
extra_target
])
# Write Misc
if
len
(
outputs
)
>
0
:
GraphDef_Device
(
meta_graph
)
GraphDef_Opt
(
meta_graph
)
...
...
@@ -348,4 +355,4 @@ def eval(self, feed_dict=None):
# cond.2: run without feeding
return
self
.
_eval_func
()
Tensor
.
eval
=
eval
Tensor
.
eval
=
eval
\ No newline at end of file
Dragon/python/setup.py
View file @
94863c2
...
...
@@ -36,7 +36,7 @@ find_packages('dragon')
find_modules
()
setup
(
name
=
'dragon'
,
version
=
'0.2.1.
6
'
,
version
=
'0.2.1.
7
'
,
description
=
'Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework'
,
url
=
'https://github.com/neopenx/Dragon'
,
author
=
'Ting Pan'
,
...
...
Dragon/src/operators/ndarray/repeat_op.cc
View file @
94863c2
...
...
@@ -8,11 +8,11 @@ template <class Context> template <typename T>
void
RepeatOp
<
Context
>::
RunWithType
()
{
auto
*
Xdata
=
input
(
0
).
template
data
<
T
,
Context
>
();
auto
*
Ydata
=
output
(
0
)
->
template
mutable_data
<
T
,
Context
>
();
kernel
::
Repeat
(
output
(
0
)
->
count
(),
kernel
::
Repeat
(
output
(
0
)
->
count
(),
outer_dim
,
dim
,
inner_dim
,
repeat
s
,
rep
s
,
Xdata
,
Ydata
,
&
ctx
());
...
...
@@ -20,16 +20,20 @@ void RepeatOp<Context>::RunWithType() {
template
<
class
Context
>
void
RepeatOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
rep
eat
s
));
output
(
0
)
->
Reshape
(
vector
<
TIndex
>
(
1
,
dim
*
reps
));
}
else
{
outer_dim
=
input
(
0
).
count
(
0
,
axis
);
dim
=
input
(
0
).
dim
(
axis
);
inner_dim
=
input
(
0
).
count
(
axis
+
1
);
vector
<
TIndex
>
dims
=
input
(
0
).
dims
();
dims
[
axis
]
*=
rep
eat
s
;
dims
[
axis
]
*=
reps
;
output
(
0
)
->
Reshape
(
dims
);
}
...
...
@@ -51,7 +55,7 @@ void RepeatGradientOp<Context>::RunWithType() {
outer_dim
,
dim
,
inner_dim
,
repeat
s
,
rep
s
,
dYdata
,
dXdata
,
&
ctx
());
...
...
@@ -59,6 +63,10 @@ void RepeatGradientOp<Context>::RunWithType() {
template
<
class
Context
>
void
RepeatGradientOp
<
Context
>::
RunOnDevice
()
{
// parse repeats from desc
Tensor
*
repeats
=
ws
()
->
GetTensor
(
repeats_desc
);
CHECK
(
repeats
->
IsType
<
int
>
())
<<
"
\n
The type of repeats should be int32."
;
reps
=
repeats
->
template
data
<
int
,
CPUContext
>
()[
0
];
if
(
axis
==
-
1
)
{
outer_dim
=
inner_dim
=
1
;
dim
=
input
(
0
).
count
();
...
...
@@ -90,4 +98,4 @@ class GetRepeatGradient final : public GradientMakerBase {
};
REGISTER_GRADIENT
(
Repeat
,
GetRepeatGradient
);
}
//
namespace
dragon
\ No newline at end of file
}
// namespace dragon
Dragon/src/operators/norm/l2_norm_op.cc
View file @
94863c2
...
...
@@ -116,6 +116,7 @@ void L2NormGradientOp<Context>::RunWithType() {
if
(
across_inner
)
{
Ndata
=
norm
->
template
data
<
T
,
CPUContext
>
();
T
sum_of_x_mul_dy
=
math
::
Dot
<
T
,
Context
>
(
buffer
->
count
(),
Xdata
,
dYdata
);
if
(
mode
==
"MEAN"
)
sum_of_x_mul_dy
=
sum_of_x_mul_dy
/
dim
;
math
::
Scale
<
T
,
Context
>
(
buffer
->
count
(),
sum_of_x_mul_dy
/
Ndata
[
n
]
/
Ndata
[
n
],
Xdata
,
dXdata
);
math
::
Sub
<
T
,
Context
>
(
buffer
->
count
(),
dYdata
,
dXdata
,
dXdata
);
math
::
Scal
<
T
,
Context
>
(
buffer
->
count
(),
T
(
1.0
/
Ndata
[
n
]),
dXdata
);
...
...
@@ -123,7 +124,7 @@ void L2NormGradientOp<Context>::RunWithType() {
// compute \sum_{i} x_{i, j}dy_{i, j}
math
::
Mul
<
T
,
Context
>
(
buffer
->
count
(),
Xdata
,
dYdata
,
Bdata
);
math
::
Gemv
<
T
,
Context
>
(
CblasTrans
,
dim
,
inner_dim
,
1.0
,
mode
==
"MEAN"
?
1.0
/
dim
:
1.0
,
Bdata
,
DMuldata
,
0.0
,
BInnerdata
);
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment