Name Last Update
3rdparty Loading commit data...
Dragon Loading commit data...
DragonBoard @ c4e649f6
examples Loading commit data...
.gitignore Loading commit data...
.gitmodules Loading commit data...
LICENSE Loading commit data...
README.md Loading commit data...

Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework

Compile Requirements for C++

  1. Google Protocol Buffer
  2. Python (2 or 3, 64bit)   |   Anaconda (2 or 3, 64bit)
  3. CUDA [Optional]
  4. CUDNN [Optional]
  5. OpenMPI [Optional]

Installation

  1. Clone this repository

  2. (Optional) Download and install CUDA

    (Optional) Download and install CUDNN

  3. (Optional) Download 3rdparty.zip and unzip to Dragon/3rdparty (Out of source code dir)

    Win64-VS2013 (OpenBLAS / Protobuf2.6 for VS2013 / CUDNN v7 / Microsoft MPI)

    Win64-VS2015 (OpenBLAS / Protobuf2.6 for VS2015 / CUDNN v7 / Microsoft MPI)

    Linux64 (OpenMPI)

    For Windows, python27/35/36.lib should be copied to Dragon/3rdparty/lib, it depends on the version of Python.

    For Linux, libpython-dev, libprotobuf-dev, libopenblas-dev and cuDNN should be installed by yourself.

  4. Install Python Requirements

    cd Dragon/python
    pip install -r requirements.txt
  5. Configure Dragon/CMakeLists.txt

    • Select optional libraries [PYTHON3 / CUDA / CUDNN / BLAS / SSE / MPI]
    • Set 3rdparty path (recommend to keep defualt)
    • Set Python include path & Numpy root path
    • Set CUDA compiling architectures if necessary
    • GCC version(4.8+, 5.0-) should add -std=c++11 to CUDA_NVCC_FLAGS, if nullptr is not found
    • We pre-generated files under Dragon/src/protos with protobuf-2.6, run protoc by yourself if higher are required
  6. Environment Variables

    Linux(Only for OpenMPI):

    • Create dragon.conf

      sudo vim /etc/ld.so.conf.d/dragon.conf
      • Append 1 line for libraries dir of your 3rdparty, e.g. :
        • /home/Dragon/3rdparty/lib
    • rebuild the scaning cache

      sudo ldconfig

    Windows

    • add binary directionary to system environment variables, e.g. :
      • PATH=........;C:\Dragon\3rdparty\bin;
  7. Setup MPI [Optional]

    Linux:

  8. Compile

    Linux:

    • Install cmake

      sudo apt-get install cmake
    • Make

      cd Dragon
      mkdir build
      cd build
      cmake ..
      make install -j16

    Windows:

    • Install cmake-gui
    • Mkdir Dragon/build
    • Configure and generate MSVC project in Dragon/build
    • Open Dragon/build/Dragon.sln
    • Compile and generate for "INSTALL" solution
  9. Deploy

    cd Dragon/python
    python setup.py install

    Hint: If you do not have permission, try as follows:

    cd Dragon/python
    python setup.py install --user

Usage

Import

import dragon

Virtual DL Frameworks

------------------- Attention -------------------

tensorflow and theano are incomplete yet, prefer not to use it.

Currently, we recommend caffe and tiny-dragon(ops + thenao.function + theano.tensor.grad + updaters)

-------------------------------------------------

import dragon.vm.theano as theano
import dragon.vm.caffe as caffe
import dragon.vm.tensorflow as tf

Tutorials

[IPython Notebook] -> (https://github.com/PhyscalX/Tutorials)

We will revise several classical examples, covering both CV, NLP and RL.

Device

import dragon.config
dragon.config.EnableCPU()
dragon.config.EnableCUDA(device_id, use_cudnn=True)

Memonger

Dragon is a extremely memory efficient framework.

It is supported to drop intermediate results(mirrow stage) during forward phase, and share grads during backward phase,

takes 25% and 50% memory-usage comparing caffe and tensorflow respectively.

To use it, just:  

import dragon.memonger as opt
  • ShareGrads
opt.share_grads()
  • Drop
import dragon.ops as ops
y = opt.drop(ops.Relu, x)

Scope

As a graph based framework, Dragon supports various scopes.

  • NameScope
import dragon
from dragon.core.tensor import Tensor
with dragon.name_scope(prefix='conv1'):
    w = Tensor('weight').Variable()    # named as conv1/weight
    b = Tensor('bias').Variable()      # named as conv1/bias
  • DeviceScope
import dragon
with dragon.deive_scope(deivce='gpu', id=0, use_cudnn=True):
    x = ops.Add(a, b)    # use /gpu:0 and cuDNN
  • PhaseScope
import dragon
import dragon.vm.theano as theano
 with dragon.phase_scope(phase='train'):
    f = theano.function(outputs=y)    # force the training phase even without gradients computation

License and Citation

Dragon is released under the BSD 2-Clause license.

Please cite Dragon in your publications if it helps your research:

@article{pan2017dragon,
  Author = {Pan, Ting},
  Journal = {arXiv preprint arXiv:1707.08265},
  Title = {Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework},
  Year = {2017}
}