Name Last Update
3rdparty Loading commit data...
Dragon Loading commit data...
DragonBoard @ c4e649f6
examples Loading commit data...
.gitignore Loading commit data...
.gitmodules Loading commit data...
LICENSE Loading commit data...
README.md Loading commit data...

Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework

Compile Requirements for C++

  1. Google Protocol Buffer
  2. Python (2 or 3, 64bit)   |   Anaconda (2 or 3, 64bit)
  3. CUDA [Optional]
  4. CUDNN [Optional]
  5. OpenMPI [Optional]
  6. NCCL [Optional]

Installation

  1. Clone this repository

  2. (Optional) Download and install CUDA

    (Optional) Download and install CUDNN

    (Optional, Linux Only) Download and install NCCL

  3. (Optional) Download 3rdparty.zip and unzip to Dragon/3rdparty (Out of source code dir)

    Win64-VS2013 (OpenBLAS / Protobuf2.6 for VS2013 / CUDNN v7 / Microsoft MPI)

    Win64-VS2015 (OpenBLAS / Protobuf2.6 for VS2015 / CUDNN v7 / Microsoft MPI)

    Linux64 (OpenMPI)

    For Windows, python27/35/36.lib should be copied to Dragon/3rdparty/lib, it depends on the version of Python.

    For Linux, libpython-dev, libprotobuf-dev, libopenblas-dev and cuDNN should be installed by yourself.

  4. Install Python Requirements

    cd Dragon/python
    pip install -r requirements.txt
  5. Configure Dragon/CMakeLists.txt

    • Select optional libraries [PYTHON3 / CUDA / CUDNN / BLAS / SSE / MPI]
    • Set 3rdparty path (recommend to keep defualt)
    • Set Python include path & Numpy root path
    • Set CUDA compiling architectures if necessary
    • GCC version(4.8+, 5.0-) should add -std=c++11 to CUDA_NVCC_FLAGS, if nullptr is not found
    • We pre-generated files under Dragon/src/protos with protobuf-2.6, run protoc by yourself if higher are required
    • OpenMPI can take NCCL and our CUDA impl at the same time, prefer not to use NCCL(memory inefficient)
  6. Environment Variables

    Linux(Only for OpenMPI):

    • Create dragon.conf

      sudo vim /etc/ld.so.conf.d/dragon.conf
      • Append 1 line for libraries dir of your 3rdparty, e.g. :
        • /home/Dragon/3rdparty/lib
    • rebuild the scaning cache

      sudo ldconfig

    Windows

    • add binary directionary to system environment variables, e.g. :
      • PATH=........;C:\Dragon\3rdparty\bin;
  7. Setup MPI [Optional]

    Linux:

  8. Compile

    Linux:

    • Install cmake

      sudo apt-get install cmake
    • Make

      cd Dragon
      mkdir build
      cd build
      cmake ..
      make install -j16

    Windows:

    • Install cmake-gui
    • Mkdir Dragon/build
    • Configure and generate MSVC project in Dragon/build
    • Open Dragon/build/Dragon.sln
    • Compile and generate for "INSTALL" solution
  9. Deploy

    cd Dragon/python
    python setup.py install

    Hint: If you do not have permission, try as follows:

    cd Dragon/python
    python setup.py install --user

Usage

Import

import dragon

Virtual DL Frameworks

------------------- Attention -------------------

tensorflow and theano are incomplete yet, prefer not to use it.

Currently, we recommend caffe and tiny-dragon(ops + thenao.function + theano.tensor.grad + updaters)

-------------------------------------------------

import dragon.vm.theano as theano
import dragon.vm.caffe as caffe
import dragon.vm.tensorflow as tf

Tutorials

[IPython Notebook] -> (https://github.com/PhyscalX/Tutorials)

We will revise several classical examples, covering both CV, NLP and RL.

Device

import dragon.config
dragon.config.EnableCPU()
dragon.config.EnableCUDA(device_id, use_cudnn=True)

Memonger

Dragon is a extremely memory efficient framework.

It is supported to drop intermediate results(mirrow stage) during forward phase, and share grads during backward phase,

takes 25% and 50% memory-usage comparing caffe and tensorflow respectively.

To use it, just:  

import dragon.memonger as opt
  • ShareGrads
opt.share_grads()
  • Drop
import dragon.ops as ops
y = opt.drop(ops.Relu, x)

Scope

As a graph based framework, Dragon supports various scopes.

  • NameScope
import dragon
from dragon.core.tensor import Tensor
with dragon.name_scope(prefix='conv1'):
    w = Tensor('weight').Variable()    # named as conv1/weight
    b = Tensor('bias').Variable()      # named as conv1/bias
  • DeviceScope
import dragon
with dragon.deive_scope(deivce='gpu', id=0, use_cudnn=True):
    x = ops.Add(a, b)    # use /gpu:0 and cuDNN
  • PhaseScope
import dragon
import dragon.vm.theano as theano
 with dragon.phase_scope(phase='train'):
    f = theano.function(outputs=y)    # force the training phase even without gradients computation

License and Citation

Dragon is released under the BSD 2-Clause license.

Please cite Dragon in your publications if it helps your research:

@article{pan2017dragon,
  Author = {Pan, Ting},
  Journal = {arXiv preprint arXiv:1707.08265},
  Title = {Dragon: A Computation Graph Virtual Machine Based Deep Learning Framework},
  Year = {2017}
}