Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
SeetaResearch
/
SeetaDet
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Snippets
Settings
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit 406662ad
authored
Oct 08, 2019
by
Ting PAN
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Comment I/O prefetch detailedly
1 parent
d5f7d2d9
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
19 additions
and
21 deletions
lib/faster_rcnn/data_layer.py
lib/faster_rcnn/data_transformer.py
lib/ops/modules.py
lib/ssd/data_layer.py
lib/ssd/data_transformer.py
lib/faster_rcnn/data_layer.py
View file @
406662a
...
...
@@ -121,7 +121,7 @@ class DataBatch(mp.Process):
self
.
_transformers
=
[]
for
i
in
range
(
self
.
_num_transformers
):
transformer
=
DataTransformer
(
**
kwargs
)
transformer
.
_
rng_
seed
+=
(
i
+
rank
*
self
.
_num_transformers
)
transformer
.
_seed
+=
(
i
+
rank
*
self
.
_num_transformers
)
transformer
.
q_in
=
self
.
Q1
transformer
.
q1_out
,
transformer
.
q2_out
=
self
.
Q21
,
self
.
Q22
transformer
.
start
()
...
...
@@ -175,10 +175,15 @@ class DataBatch(mp.Process):
'gt_boxes'
:
np
.
concatenate
(
all_boxes
,
axis
=
0
),
}
# Two queues to implement aspect-grouping
# This is necessary to reduce the gpu memory
# from fetching a huge square batch blob
q1
,
q2
=
self
.
Q21
,
self
.
Q22
# Main prefetch loop
while
True
:
if
q1
.
qsize
()
>=
cfg
.
TRAIN
.
IMS_PER_BATCH
:
self
.
Q3
.
put
(
produce
(
q1
))
elif
q2
.
qsize
()
>=
cfg
.
TRAIN
.
IMS_PER_BATCH
:
self
.
Q3
.
put
(
produce
(
q2
))
q1
,
q2
=
q2
,
q1
#
Sample two queues uniformly
q1
,
q2
=
q2
,
q1
#
Uniform sampling trick
lib/faster_rcnn/data_transformer.py
View file @
406662a
...
...
@@ -26,13 +26,12 @@ from lib.utils.boxes import flip_boxes
class
DataTransformer
(
multiprocessing
.
Process
):
def
__init__
(
self
,
**
kwargs
):
super
(
DataTransformer
,
self
)
.
__init__
()
self
.
_
rng_
seed
=
cfg
.
RNG_SEED
self
.
_seed
=
cfg
.
RNG_SEED
self
.
_use_flipped
=
cfg
.
TRAIN
.
USE_FLIPPED
self
.
_use_diff
=
cfg
.
TRAIN
.
USE_DIFF
self
.
_classes
=
kwargs
.
get
(
'classes'
,
(
'__background__'
,))
self
.
_num_classes
=
len
(
self
.
_classes
)
self
.
_class_to_ind
=
dict
(
zip
(
self
.
_classes
,
range
(
self
.
_num_classes
)))
self
.
_queues
=
[]
self
.
q_in
=
self
.
q1_out
=
self
.
q2_out
=
None
self
.
daemon
=
True
...
...
@@ -147,7 +146,10 @@ class DataTransformer(multiprocessing.Process):
return
im
,
im_scale
,
gt_boxes
def
run
(
self
):
np
.
random
.
seed
(
self
.
_rng_seed
)
# Fix the process-local random seed
np
.
random
.
seed
(
self
.
_seed
)
# Main prefetch loop
while
True
:
outputs
=
self
.
get
(
self
.
q_in
.
get
())
if
len
(
outputs
[
2
])
<
1
:
...
...
lib/ops/modules.py
View file @
406662a
...
...
@@ -66,19 +66,6 @@ class RetinaNetDecoder(torch.nn.Module):
(
2
**
(
octave
/
float
(
scales_per_octave
)))
for
octave
in
range
(
scales_per_octave
)]
def
register_operator
(
self
):
return
{
'op_type'
:
'Proposal'
,
'arguments'
:
{
'det_type'
:
'RETINANET'
,
'strides'
:
self
.
strides
,
'scales'
:
self
.
scales
,
'ratios'
:
[
float
(
e
)
for
e
in
cfg
.
RETINANET
.
ASPECT_RATIOS
],
'pre_nms_top_n'
:
cfg
.
RETINANET
.
PRE_NMS_TOP_N
,
'score_thresh'
:
cfg
.
TEST
.
SCORE_THRESH
,
}
}
def
forward
(
self
,
features
,
cls_prob
,
bbox_pred
,
ims_info
):
return
F
.
decode_retinanet
(
features
=
features
,
...
...
lib/ssd/data_layer.py
View file @
406662a
...
...
@@ -115,7 +115,7 @@ class DataBatch(mp.Process):
self
.
_transformers
=
[]
for
i
in
range
(
self
.
_num_transformers
):
transformer
=
DataTransformer
(
**
kwargs
)
transformer
.
_
rng_
seed
+=
(
i
+
rank
*
self
.
_num_transformers
)
transformer
.
_seed
+=
(
i
+
rank
*
self
.
_num_transformers
)
transformer
.
q_in
,
transformer
.
q_out
=
self
.
Q1
,
self
.
Q2
transformer
.
start
()
self
.
_transformers
.
append
(
transformer
)
...
...
@@ -159,6 +159,7 @@ class DataBatch(mp.Process):
cfg
.
SSD
.
RESIZE
.
WIDTH
,
3
,
)
# Main prefetch loop
while
True
:
boxes_to_pack
=
[]
image_batch
=
np
.
zeros
(
image_batch_shape
,
'uint8'
)
...
...
lib/ssd/data_transformer.py
View file @
406662a
...
...
@@ -26,7 +26,7 @@ from lib.utils.boxes import flip_boxes
class
DataTransformer
(
multiprocessing
.
Process
):
def
__init__
(
self
,
**
kwargs
):
super
(
DataTransformer
,
self
)
.
__init__
()
self
.
_
rng_
seed
=
cfg
.
RNG_SEED
self
.
_seed
=
cfg
.
RNG_SEED
self
.
_mirror
=
cfg
.
TRAIN
.
USE_FLIPPED
self
.
_use_diff
=
cfg
.
TRAIN
.
USE_DIFF
self
.
_classes
=
kwargs
.
get
(
'classes'
,
(
'__background__'
,))
...
...
@@ -114,7 +114,10 @@ class DataTransformer(multiprocessing.Process):
return
img
,
gt_boxes
def
run
(
self
):
np
.
random
.
seed
(
self
.
_rng_seed
)
# Fix the process-local random seed
np
.
random
.
seed
(
self
.
_seed
)
# Main prefetch loop
while
True
:
outputs
=
self
.
get
(
self
.
q_in
.
get
())
if
len
(
outputs
[
1
])
<
1
:
...
...
Write
Preview
Markdown
is supported
Attach a file
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to post a comment